53 research outputs found

    Effects of insularity on insect leaf herbivory and chemical defences in a Mediterranean oak species

    Get PDF
    Aim Research on plant–herbivore interactions has shown that islands typically have low abundances and diversity of herbivores because of barriers to dispersal, isolation and reduced land area. Islands commonly have lower levels of herbivory relative to mainland regions, and, as a consequence, insular plants should exhibit lower levels of defences than their mainland counterparts. Despite these predictions, there are significant gaps in our understanding of insularity effects on plant–herbivore interactions. For instance, most work addressing the effects of insularity on plant–herbivore interactions have compared one or a few islands with a single mainland site. In addition, studies have measured herbivory or plant defences but not both, and the influence of abiotic factors has been neglected. Location Mediterranean Basin (from Spain to Greece). Taxon Quercus ilex L. Methods We conducted a large‐scale study to investigate whether insect leaf herbivory and plant chemical defences in holm oak (Quercus ilex L.) differ between insular versus mainland populations. We further investigated mechanisms by which insularity effects on herbivory may take place by assessing the influence of defences and climatic variables on herbivory. Results We found that insular populations exhibited lower herbivory and higher defences (condensed tannins) than their mainland counterparts. Our analyses, however, suggest that these concomitant patterns of insect herbivory and plant defences were seemingly unrelated as island versus mainland differences in defences did not account for the observed pattern in herbivory. Furthermore, climatic factors did not explain insularity effects on either herbivory or plant defences. Main conclusions Overall, this study provides one of the most robust assessments to date on insularity effects on herbivory and builds towards a better understanding of the ecology and evolution of plant–insect interactions in insular ecosystems.info:eu-repo/semantics/acceptedVersio

    Effects of insularity on insect leaf herbivory and chemical defences in a Mediterranean oak species

    Get PDF
    Aim Research on plant–herbivore interactions has shown that islands typically have low abundances and diversity of herbivores because of barriers to dispersal, isolation and reduced land area. Islands commonly have lower levels of herbivory relative to mainland regions, and, as a consequence, insular plants should exhibit lower levels of defences than their mainland counterparts. Despite these predictions, there are significant gaps in our understanding of insularity effects on plant–herbivore interactions. For instance, most work addressing the effects of insularity on plant–herbivore interactions have compared one or a few islands with a single mainland site. In addition, studies have measured herbivory or plant defences but not both, and the influence of abiotic factors has been neglected. Location Mediterranean Basin (from Spain to Greece). Taxon Quercus ilex L. Methods We conducted a large‐scale study to investigate whether insect leaf herbivory and plant chemical defences in holm oak (Quercus ilex L.) differ between insular versus mainland populations. We further investigated mechanisms by which insularity effects on herbivory may take place by assessing the influence of defences and climatic variables on herbivory. Results We found that insular populations exhibited lower herbivory and higher defences (condensed tannins) than their mainland counterparts. Our analyses, however, suggest that these concomitant patterns of insect herbivory and plant defences were seemingly unrelated as island versus mainland differences in defences did not account for the observed pattern in herbivory. Furthermore, climatic factors did not explain insularity effects on either herbivory or plant defences. Main conclusions Overall, this study provides one of the most robust assessments to date on insularity effects on herbivory and builds towards a better understanding of the ecology and evolution of plant–insect interactions in insular ecosystems.info:eu-repo/semantics/acceptedVersio

    Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v.1-Hydro)

    Get PDF
    Forest ecosystem models based on heuristic water stress functions poorly predict tropical forest response to drought partly because they do not capture the diversity of hydraulic traits (including variation in tree size) observed in tropical forests. We developed a continuous porous media approach to modeling plant hydraulics in which all parameters of the constitutive equations are biologically interpretable and measurable plant hydraulic traits (e.g., turgor loss point πtlp, bulk elastic modulus ε, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs), and the leaf : sapwood area ratio Al : As). We embedded this plant hydraulics model within a trait forest simulator (TFS) that models light environments of individual trees and their upper boundary conditions (transpiration), as well as providing a means for parameterizing variation in hydraulic traits among individuals. We synthesized literature and existing databases to parameterize all hydraulic traits as a function of stem and leaf traits, including wood density (WD), leaf mass per area (LMA), and photosynthetic capacity (Amax), and evaluated the coupled model (called TFS v.1-Hydro) predictions, against observed diurnal and seasonal variability in stem and leaf water potential as well as stand-scaled sap flux.Our hydraulic trait synthesis revealed coordination among leaf and xylem hydraulic traits and statistically significant relationships of most hydraulic traits with more easily measured plant traits. Using the most informative empirical trait–trait relationships derived from this synthesis, TFS v.1-Hydro successfully captured individual variation in leaf and stem water potential due to increasing tree size and light environment, with model representation of hydraulic architecture and plant traits exerting primary and secondary controls, respectively, on the fidelity of model predictions. The plant hydraulics model made substantial improvements to simulations of total ecosystem transpiration. Remaining uncertainties and limitations of the trait paradigm for plant hydraulics modeling are highlighted

    Individual-Based Modeling of Amazon Forests Suggests That Climate Controls Productivity While Traits Control Demography

    Get PDF
    Climate, species composition, and soils are thought to control carbon cycling and forest structure in Amazonian forests. Here, we add a demographics scheme (tree recruitment, growth, and mortality) to a recently developed non-demographic model—the Trait-based Forest Simulator (TFS)—to explore the roles of climate and plant traits in controlling forest productivity and structure. We compared two sites with differing climates (seasonal vs. aseasonal precipitation) and plant traits. Through an initial validation simulation, we assessed whether the model converges on observed forest properties (productivity, demographic and structural variables) using datasets of functional traits, structure, and climate to model the carbon cycle at the two sites. In a second set of simulations, we tested the relative importance of climate and plant traits for forest properties within the TFS framework using the climate from the two sites with hypothetical trait distributions representing two axes of functional variation (“fast” vs. “slow” leaf traits, and high vs. low wood density). The adapted model with demographics reproduced observed variation in gross (GPP) and net (NPP) primary production, and respiration. However, NPP and respiration at the level of plant organs (leaf, stem, and root) were poorly simulated. Mortality and recruitment rates were underestimated. The equilibrium forest structure differed from observations of stem numbers suggesting either that the forests are not currently at equilibrium or that mechanisms are missing from the model. Findings from the second set of simulations demonstrated that differences in productivity were driven by climate, rather than plant traits. Contrary to expectation, varying leaf traits had no influence on GPP. Drivers of simulated forest structure were complex, with a key role for wood density mediated by its link to tree mortality. Modeled mortality and recruitment rates were linked to plant traits alone, drought-related mortality was not accounted for. In future, model development should focus on improving allocation, mortality, organ respiration, simulation of understory trees and adding hydraulic traits. This type of model that incorporates diverse tree strategies, detailed forest structure and realistic physiology is necessary if we are to be able to simulate tropical forest responses to global change scenarios

    Predicting species dominance shifts across elevation gradients in mountain forests in Greece under a warmer and drier climate

    Get PDF
    The Mediterranean Basin is expected to face warmer and drier conditions in the future, following projected increases in temperature and declines in precipitation. The aim of this study is to explore how forests dominated by Abies borisii-regis, Abies cephalonica, Fagus sylvatica, Pinus nigra and Quercus frainetto will respond under such conditions. We combined an individual-based model (GREFOS), with a novel tree ring data set in order to constrain tree diameter growth and to account for inter- and intraspecific growth variability. We used wood density data to infer tree longevity, taking into account inter- and intraspecific variability. The model was applied at three 500-m-wide elevation gradients at Taygetos in Peloponnese, at Agrafa on Southern Pindos and at Valia Kalda on Northern Pindos in Greece. Simulations adequately represented species distribution and abundance across the elevation gradients under current climate. We subsequently used the model to estimate species and functional trait shifts under warmer and drier future conditions based on the IPCC A1B scenario. In all three sites, a retreat of less drought-tolerant species and an upward shift of more drought-tolerant species were simulated. These shifts were also associated with changes in two key functional traits, in particular maximum radial growth rate and wood density. Drought-tolerant species presented an increase in their average maximal growth and decrease in their average wood density, in contrast to less drought-tolerant species

    The influence of taxonomy and environment on leaf trait variation along tropical abiotic gradients

    Get PDF
    Deconstructing functional trait variation and co-variation across a wide range of environmental conditions is necessary to increase the mechanistic understanding of community assembly processes and improve current parameterization of dynamic vegetation models. Here, we present a study that deconstructs leaf trait variation and co-variation into within-species, taxonomic-, and plot-environment components along three tropical environmental gradients in Peru, Brazil, and Ghana. To do so, we measured photosynthetic, chemical, and structural leaf traits using a standardized sampling protocol for more than 1,000 individuals belonging to 367 species. Variation associated with the taxonomic component (species + genus + family) for most traits was relatively consistent across environmental gradients, but within-species variation and plot-environment variation was strongly dependent on the environmental gradient. Trait-trait co-variation was strongly linked to the environmental gradient where traits were measured, although some traits had consistent co-variation components irrespective of gradient. Our results demonstrate that filtering along these tropical gradients is mostly expressed through trait taxonomic variation, but that trait co-variation is strongly dependent on the local environment, and thus global trait co-variation relationships might not always apply at smaller scales and may quickly change under future climate scenarios.Fil: Oliveras, Imma. University of Oxford; Reino UnidoFil: Bentley, Lisa. Sonoma State University; Estados UnidosFil: Fyllas, Nikolaos M.. University Of The Aegean; GreciaFil: Gvozdevaite, Agne. University of Oxford; Reino UnidoFil: Shenkin, Alexander Frederick. University of Oxford; Reino UnidoFil: Peprah, Theresa. Forestry Research Institute Of Ghana; GhanaFil: Morandi, Paulo. Universidade Federal do Mato Grosso do Sul; BrasilFil: Peixoto, Karine Silva. Universidade Federal do Mato Grosso do Sul; BrasilFil: Boakye, Mickey. Forestry Research Institute Of Ghana; GhanaFil: Adu-Bredu, Stephen. Csir - Forestry Research Institute Of Ghana; GhanaFil: Schwantes Marimon, Beatriz. Universidade Do Estado de Mato Grosso; BrasilFil: Marimon Junior, Ben Hur. Universidade Do Estado de Mato Grosso; BrasilFil: Salinas, Norma. Pontificia Universidad Católica de Perú; PerúFil: Martin, Roberta. Arizona State University; Estados UnidosFil: Asner, Gregory. Arizona State University; Estados UnidosFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Enquist, Brian J.. University of Arizona; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino Unid

    Separating species and environmental determinants of leaf functional traits in temperate rainforest plants along a soil-development chronosequence

    Get PDF
    We measured a diverse range of foliar characteristics in shrub and tree species in temperate rainforest communities along a soil chronosequence (six sites from 8 to 120 000 years) and used multilevel model analysis to attribute the proportion of variance for each trait into genetic (G, here meaning species-level), environmental (E) and residual error components. We hypothesised that differences in leaf traits would be driven primarily by changes in soil nutrient availability during ecosystem progression and retrogression. Several leaf structural, chemical and gas-exchange traits were more strongly driven by G than E effects. For leaf mass per unit area (MA), foliar [N], net CO2 assimilation and dark respiration rates and foliar carbohydrate concentration, the G component accounted for 60–87% of the total variance, with the variability associated with plot, the E effect, much less important. Other traits, such as foliar [P] and N : P, displayed strong E and residual effects. Analyses revealed significant reductions in the slopes of G-only bivariate relationships when compared with raw relationships, indicating that a large proportion of trait–trait relationships is species based, and not a response to environment per se. This should be accounted for when assessing the mechanistic basis for using such relationships in order to make predictions of responses of plants to short-term environmental change

    Consistent, small effects of treefall disturbances on the composition and diversity of four Amazonian forests

    Get PDF
    Summary 1. Understanding the resilience of moist tropical forests to treefall disturbance events is important for understanding the mechanisms that underlie species coexistence and for predicting the future composition of these ecosystems. Here, we test whether variation in the functional composition of Amazonian forests determines their resilience to disturbance. 2. We studied the legacy of natural treefall disturbance events in four forests across Amazonia that differ substantially in functional composition. We compared the composition and diversity of all free-standing woody stems 2-10 cm diameter in previously disturbed and undisturbed 20 9 20 m subplots within 55, one-hectare, long-term forest inventory plots. 3. Overall, stem number increased following disturbance, and species and functional composition shifted to favour light-wooded, small-seeded taxa. Alpha-diversity increased, but beta-diversity was unaffected by disturbance, in all four forests. 4. Changes in response to disturbance in both functional composition and alpha-diversity were, however, small (2 -4% depending on the parameter) and similar among forests. 5. Synthesis. This study demonstrates that variation in the functional composition of Amazonian forests does not lead to large differences in the response of these forests to treefall disturbances, and overall, these events have a minor role in maintaining the diversity of these ecosystems

    Regional and large-scale patterns in Amazon forest structure and function are mediated by variations in soil physical and chemical properties

    Get PDF
    Forest structure and dynamics have been noted to vary across the Amazon Basin in an east-west gradient in a pattern which coincides with variations in soil fertility and geology. This has resulted in the hypothesis that soil fertility may play an important role in explaining Basin-wide variations in forest biomass, growth and stem turnover rates. To test this hypothesis and assess the importance of edaphic properties in affect forest structure and dynamics, soil and plant samples were collected in a total of 59 different forest plots across the Amazon Basin. Samples were analysed for exchangeable cations, C, N, pH with various Pfractions also determined. Physical properties were also examined and an index of soil physical quality developed. Overall, forest structure and dynamics were found to be strongly and quantitatively related to edaphic conditions. Tree turnover rates emerged to be mostly influenced by soil physical properties whereas forest growth rates were mainly related to a measure of available soil phosphorus, although also dependent on rainfall amount and distribution. On the other hand, large scale variations in forest biomass could not be explained by any of the edaphic properties measured, nor by variation in climate. A new hypothesis of self-maintaining forest dynamic feedback mechanisms initiated by edaphic conditions is proposed. It is further suggested that this is a major factor determining forest disturbance levels, species composition and forest productivity on a Basin wide scale

    Evolutionary Heritage Influences Amazon Tree Ecology

    Get PDF
    Lineages tend to retain ecological characteristics of their ancestors through time. However, for some traits, selection during evolutionary history may have also played a role in determining trait values. To address the relative importance of these processes requires large-scale quantification of traits and evolutionary relationships among species. The Amazonian tree flora comprises a high diversity of angiosperm lineages and species with widely differing life-history characteristics, providing an excellent system to investigate the combined influences of evolutionary heritage and selection in determining trait variation. We used trait data related to the major axes of life-history variation among tropical trees (e.g. growth and mortality rates) from 577 inventory plots in closed-canopy forest, mapped onto a phylogenetic hypothesis spanning more than 300 genera including all major angiosperm clades to test for evolutionary constraints on traits. We found significant phylogenetic signal (PS) for all traits, consistent with evolutionarily related genera having more similar characteristics than expected by chance. Although there is also evidence for repeated evolution of pioneer and shade tolerant life-history strategies within independent lineages, the existence of significant PS allows clearer predictions of the links between evolutionary diversity, ecosystem function and the response of tropical forests to global change
    corecore