125 research outputs found

    Vortices ans Polynomials: Nonuniqueness of the Adler-Moser polynomials for the Tkachenko equation

    Full text link
    Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of a system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is obtained that the Adler - Moser polynomial are not unique polynomial solutions of the Tkachenko equation. A generalization of the Tkachenko equation to the case of translating relative equilibria is derived. It is shown that the generalization of the Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers.Comment: 15 pages, 2 figure

    Effect of co-adsorbate and hole transporting layer on the photoinduced charge separation at the TiO2-phthalocyanine interface

    Full text link
    Understanding the primary processes of charge separation (CS) in solid-state dye-sensitized solar cells (DSSCs) and, in particular, analysis of the efficiency losses during these primary photoreactions is essential for designing new and efficient photosensitizers. Phthalocyanines (Pcs) are potentially interesting sensitizers having absorption in the red side of the optical spectrum and known to be efficient electron donors. However, the efficiencies of Pc-sensitized DSSCs are lower than that of the best DSSCs, which is commonly attributed to the aggregation tendency of Pcs. In this study, we employ ultrafast spectroscopy to discover why and how much does the aggregation affect the efficiency. The samples were prepared on a standard fluorine-doped tin oxide (FTO) substrates covered by a porous layer of TiO2nanoparticles, functionalized by a Pc sensitizer and filled by a hole transporting material (Spiro-MeOTAD). The study demonstrates that the aggregation can be suppressed gradually by using co-adsorbates, such as chenodeoxycholic acid (CDCA) and oleic acid, but rather high concentrations of co-adsorbate is required. Gradually, a few times improvement of quantum efficiency was observed at sensitizer/co-adsorbate ratio Pc/CDCA = 1:10 and higher. The time-resolved spectroscopy studies were complemented by standard photocurrent measurements of the same sample structures, which also confirmed gradual increase in photon-to-current conversion efficiency on mixing Pc with CDCAK.V. acknowledges the Doctoral Programme of Tampere University of Technology for the financial support. N.V.T. acknowledges NATO SPS project no. 985043. Financial support from Comunidad de Madrid, Spain (S2013/MIT2841, FOTOCARBON) and MINECO, Spain (CTQ2014- 52869-P and CTQ2017-85393-P) is acknowledged. IMDEA Nanociencia acknowledges support from the “Severo Ochoa” Programme for Centres of Excellence in R&D (MINECO, grant SEV-2016-0686)

    Photoinduced energy transfer in ZnCdSeS quantum dot-phthalocyanines hybrids

    Get PDF
    In this article, interaction between ZnCdSeS quantum dot (QD) and phthalocyanines with variable linker has been reported. Steady-state and time-resolved spectroscopic investigation reveals that only photoinduced energy transfer occurs from QD to phthalocyanines. To evaluate quantitatively the energy transfer, the Poisson statistics of QD-dye complex formation was used in the analysis of steady-state and time-resolved emission quenching, which allows to estimate the energy transfer rate constant for an ideal one-to-one complex. The measured rate constants are compared to the rates evaluated based on the classic Förster theory, which shows roughly 1 nm discrepancy in the energy transfer distance estimation, or one order in magnitude discrepancy in the transfer rate constants.S.M. is grateful to the TUT postdoctoral programme. T.T. is grateful for the financial support of the MINECO, Spain (CTQ2017-85393-P), the Comunidad de Madrid (FOTOCARBON, S2013/MIT-2841). IMDEA Nanociencia acknowledges support from the ‘Severo Ochoa’ Programme for Centres of Excellence in R&D (MINECO, Grant SEV-2016-0686)

    Charge carrier dynamics in tantalum oxide overlayered and tantalum doped hematite photoanodes

    Get PDF
    We employ atomic layer deposition to prepare 50 nm thick hematite photoanodes followed by passivating them with a 0.5 nm thick Ta2O5-overlayer and compare them with samples uniformly doped with the same amount of tantalum. We observe a three-fold improvement in photocurrent with the same onset voltage using Ta-overlayer hematite photoanodes, while electrochemical impedance spectroscopy under visible light irradiation shows a decreased amount of surface states under water splitting conditions. The Tadoped samples have an even higher increase in photocurrent along with a 0.15 V cathodic shift in the onset voltage and decreased resistivity. However, the surface state capacitance for the Ta-doped sample is twice that of the reference photoanode, which implies a larger amount of surface hole accumulation. We further utilize transient absorption spectroscopy in the sub-millisecond to second timescale under operating conditions to show that electron trapping in both Ta2O5-passivated and Ta-doped samples is markedly reduced. Ultrafast transient absorption spectroscopy in the sub-picosecond to nanosecond timescale shows faster charge carrier dynamics and reduced recombination in the Ta-doped hematite photoanode resulting in the increased photoelectrochemical performance when compared with the Ta2O5-overlayer sample. Our results show that passivation does not affect the poor charge carrier dynamics intrinsic to hematite based photoanodes. The Ta-doping strategy results in more efficient electron extraction, solving the electron trapping issue and leading to increased performance over the surface passivation strategy.Peer reviewe

    Remarkable Dependence of the Final Charge Separation Efficiency on the Donor–Acceptor Interaction in Photoinduced Electron Transfer

    Get PDF
    The unprecedented dependence of final charge separation efficiency as a function of donor–acceptor interaction in covalently-linked molecules with a rectilinear rigid oligo-p-xylene bridge has been observed. Optimization of the donor–acceptor electronic coupling remarkably inhibits the undesirable rapid decay of the singlet charge-separated state to the ground state, yielding the final long-lived, triplet charge-separated state with circa 100% efficiency. This finding is extremely useful for the rational design of artificial photosynthesis and organic photovoltaic cells toward efficient solar energy conversion

    Is carrier mobility a limiting factor for charge transfer in TiO2/Si devices? A study by transient reflectance spectroscopy

    Get PDF
    TiO2 coatings are often deposited over silicon-based devices for surface passivation and corrosion protection. However, the charge transfer (CT) across the TiO2/Si interface is critical as it may instigate potential losses and recombination of charge carriers in optoelectronic devices. Therefore, to investigate the CT across the TiO2/Si interface, transient reflectance (TR) spectroscopy was employed as a contact-free method to evaluate the impact of interfacial SiOx, heat-treatments, and other phenomena on the CT. Thin-film interference model was adapted to separate signals for Si and TiO2 and to estimate the number of transferred carriers. Charge transfer velocity was found to be 5.2 × 104 cm s−1 for TiO2 heat-treated at 300 °C, and even faster for amorphous TiO2 if the interfacial SiOx layer was removed using HF before TiO2 deposition. However, the interface is easily oversaturated because of slow carrier diffusion in TiO2 away from the TiO2/Si interface. This inhibits CT, which could become an issue for heavily concentrated solar devices. Also, increasing the heat-treatment temperature from 300 °C to 550 °C has only little impact on the CT time but leads to reduced carrier lifetime of ¡3 ns in TiO2 due to back recombination via the interfacial SiOx, which is detrimental to TiO2/Si device performance.publishedVersionPeer reviewe

    Electronically Coupled Uranium and Iron Oxide Heterojunctions as Efficient Water Oxidation Catalysts

    Get PDF
    [[abstract]]The most critical challenge faced in realizing a high efficiency photoelectrochemical water splitting process is the lack of suitable photoanodes enabling the transfer of four electrons involved in the complex oxygen evolution reaction (OER). Uranium oxides are efficient catalysts due to their wide range optical absorption (E g ≈ 1.8–3.2 eV), high photoconductivity, and multiple valence switching among uranium centers that improves the charge propagation kinetics. Herein, thin films of depleted uranium oxide (U3O8) are demonstrated grown via chemical vapor deposition effectively accelerate the OER in conjunction with hematite (α‐Fe2O3) overlayers through a built‐in potential at the interface. Density functional theory simulations demonstrate that the multivalence of U and Fe ions induce the adjustment of the band alignment subject to the concentration of interfacial Fe ions. In general, the equilibrium state depicts a type II band edge as the favored alignment, which improves charge‐transfer processes as observed in transient and X‐ray absorption (TAS and XAS) spectroscopy. The enhanced water splitting photocurrent density of the heterostructures (J = 2.42 mA cm−2) demonstrates the unexplored potential of uranium oxide in artificial photosynthesis.[[notice]]補正完

    Near-Unity Singlet Fission on a Quantum Dot Initiated by Resonant Energy Transfer

    Get PDF
    The conversion of a high-energy photon into two excitons using singlet fission (SF) has stimulated a variety of studies in fields from fundamental physics to device applications. However, efficient SF has only been achieved in limited systems, such as solid crystals and covalent dimers. Here, we established a novel system by assembling 4-(6,13-bis(2-(triisopropylsilyl)ethynyl)pentacen-2-yl)benzoic acid (Pc) chromophores on nanosized CdTe quantum dots (QDs). A near-unity SF (198 ± 5.7%) initiated by interfacial resonant energy transfer from CdTe to surface Pc was obtained. The unique arrangement of Pc determined by the surface atomic configuration of QDs is the key factor realizing unity SF. The triplet-triplet annihilation was remarkably suppressed due to the rapid dissociation of triplet pairs, leading to long-lived free triplets. In addition, the low light-harvesting ability of Pc in the visible region was promoted by the efficient energy transfer (99 ± 5.8%) from the QDs to Pc. The synergistically enhanced light-harvesting ability, high triplet yield, and long-lived triplet lifetime of the SF system on nanointerfaces could pave the way for an unmatched advantage of SF.acceptedVersionPeer reviewe
    corecore