7,652 research outputs found

    Algorithm for jet identification and reconstruction in densly populated calorimetric system

    Get PDF
    The jet reconstruction algorithm is developed under the condition of high particle density in the calorimetric system. The performance of reconstruction of hard QCD jets with initial parton energies 50-300 GeV is studied in central Pb--Pb collisions with a modified cone jet finder which includes an algorithm for event-by-event background subtraction. The heavy ion background is simulated using the HIJING Monte-Carlo generator with dNch/dy = 5000. Results on the achieved jet reconstruction efficiency, purity, energy and spatial resolution are presented

    Atomic structure of dislocation kinks in silicon

    Full text link
    We investigate the physics of the core reconstruction and associated structural excitations (reconstruction defects and kinks) of dislocations in silicon, using a linear-scaling density-matrix technique. The two predominant dislocations (the 90-degree and 30-degree partials) are examined, focusing for the 90-degree case on the single-period core reconstruction. In both cases, we observe strongly reconstructed bonds at the dislocation cores, as suggested in previous studies. As a consequence, relatively low formation energies and high migration barriers are generally associated with reconstructed (dangling-bond-free) kinks. Complexes formed of a kink plus a reconstruction defect are found to be strongly bound in the 30-degree partial, while the opposite is true in the case of 90-degree partial, where such complexes are found to be only marginally stable at zero temperature with very low dissociation barriers. For the 30-degree partial, our calculated formation energies and migration barriers of kinks are seen to compare favorably with experiment. Our results for the kink energies on the 90-degree partial are consistent with a recently proposed alternative double-period structure for the core of this dislocation.Comment: 12 pages, two-column style with 8 postscript figures embedded. Uses REVTEX and epsf macros. Also available at http://www.physics.rutgers.edu/~dhv/preprints/index.html#rn_di

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV

    Get PDF
    The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8  TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
    corecore