7 research outputs found

    Transkriptomika a vývojová plasticita smyslových systémů u ryb

    Get PDF
    Organismy využívají smyslové soustavy k vnímání svého prostředí a tím ke svému přežití, kompetici i rozmnožování. Zrak klíčovým smyslem pro mnoho obratlovců včetně paprskoploutvých ryb (Actinopterygii). Světločivným orgánem zraku je sítnice, která se skládá z čípkových a tyčinkových fotoreceptorů, z nichž každý je charakterizován svou vlastní sadou opsinových proteinů, které spolu s chromoforem tvoří fotosenzitivní pigment. Vidění je energeticky velmi nákladné, a proto se zrak často rychle přizpůsobuje konkrétním světelným podmínkám, aby co nejlépe odpovídal dostupným vlnovým délkám světla. Tato dizertační práce se zaměřuje na evoluci a vývoj (=ontogenezi) exprese opsinových genů u paprskoploutvých ryb, tedy jejím hlavním cílem je prozkoumat, jak souvisí ontogenetické rozdíly zraku u různých fylogenetických skupin ryb s ekologickými podmínkami prostředí. U některých druhů je známo, že ekologické změny během ontogeneze mohou ovlivnit jejich fyziologii, včetně funkce zraku. V této práci se zaměřuji právě na molekulární podstatu zraku a jeho rozdíly mezi jednotlivými vývojovými stádii, zejména tedy mezi larvami a dospělci. První kapitola mojí práce je zaměřena na vývojové změny u hlubokomořských ryb, tedy jedinečné skupiny organismů, u které se v evoluci vyvinuly adaptace k maximalizaci zachycení...Organisms depend on sensory input to survive and thrive. Vision is a key sensory system to many vertebrates, including ray-finned fishes (Actinopterygii). Sight is enabled by the retina composed of cone and rod photoreceptors, each characterised by its own set of opsin proteins that together with the chromophore form the photo-sensitive pigment. Vision is energetically very costly and so it is often adapted to specific photic conditions to best match available wavelengths of light. This Ph.D. thesis focuses on the evolution and development of opsin gene expression in ray-finned fishes. It mainly aims to explore how ontogenetic differences of visual capabilities across the fish phylogeny relate to ecological conditions. In some species, ecological shifts between developmental stages can affect their physiology, including vision. In this thesis I focused on the molecular differences of the visual system between developmental stages, mostly focusing on larvae and adults. The first chapter of the thesis focuses on developmental changes in deep-sea fishes, a unique group of organisms that has evolved unconventional adaptations to maximise photon capture in an otherwise photon- depleted environment. Most deep-sea fishes start their lives in the shallow, sun-lit, predator and food abundant epipelagic...Katedra zoologieDepartment of ZoologyPřírodovědecká fakultaFaculty of Scienc

    Transcriptomics and developmental plasticity of sensory systems in fishes

    No full text
    Organisms depend on sensory input to survive and thrive. Vision is a key sensory system to many vertebrates, including ray-finned fishes (Actinopterygii). Sight is enabled by the retina composed of cone and rod photoreceptors, each characterised by its own set of opsin proteins that together with the chromophore form the photo-sensitive pigment. Vision is energetically very costly and so it is often adapted to specific photic conditions to best match available wavelengths of light. This Ph.D. thesis focuses on the evolution and development of opsin gene expression in ray-finned fishes. It mainly aims to explore how ontogenetic differences of visual capabilities across the fish phylogeny relate to ecological conditions. In some species, ecological shifts between developmental stages can affect their physiology, including vision. In this thesis I focused on the molecular differences of the visual system between developmental stages, mostly focusing on larvae and adults. The first chapter of the thesis focuses on developmental changes in deep-sea fishes, a unique group of organisms that has evolved unconventional adaptations to maximise photon capture in an otherwise photon- depleted environment. Most deep-sea fishes start their lives in the shallow, sun-lit, predator and food abundant epipelagic..

    Data from: Coevolution of female and male genital components to avoid genital size mismatches in sexually dimorphic spiders

    No full text
    Background: In most animal groups, it is unclear how body size variation relates to genital size differences between the sexes. While most morphological features tend to scale with total somatic size, this does not necessarily hold for genitalia because divergent evolution in somatic size between the sexes would cause genital size mismatches. Theory predicts that the interplay of female-biased sexual size dimorphism (SSD) and sexual genital size dimorphism (SGD) should adhere to the ‘positive genital divergence’, the ‘constant genital divergence’, or the ‘negative genital divergence’ model, but these models remain largely untested. We test their validity in the spider family Nephilidae known for the highest degrees of SSD among terrestrial animals. Results: Through comparative analyses of sex-specific somatic and genital sizes, we first demonstrate that 99 of the 351 pairs of traits are phylogenetically correlated. Through factor analyses we then group these traits for MCMCglmm analyses that test broader correlation patterns, and these reveal significant correlations in 10 out of the 36 pairwise comparisons. Both types of analyses agree that female somatic and internal genital sizes evolve independently. While sizes of non-intromittent male genital parts coevolve with male body size, the size of the intromittent male genital parts is independent of the male somatic size. Instead, male intromittent genital size coevolves with female (external and, in part, internal) genital size. All analyses also agree that SGD and SSD evolve independently. Conclusions: Internal dimensions of female genitalia evolve independently of female body size in nephilid spiders, and similarly, male intromittent genital size evolves independently of the male body size. The size of the male intromittent organ (the embolus) and the sizes of female internal and external genital components thus seem to respond to selection against genital size mismatches. In accord with these interpretations, we reject the validity of the existing theoretical models of genital and somatic size dimorphism in spiders

    Cuttlefishes (Cephalopoda, Sepiidae): the bare bones—an hypothesis of relationships

    No full text
    Based on a comprehensive analysis of molecular sequence data, the Sepiidae genera Acanthosepion Rochebrune, 1884; Ascarosepion Rochebrune, 1884; Aurosepina Jothinayagam, 1987; Decorisepia Iredale, 1926; Doratosepion Rochebrune, 1884; Rhombosepion Rochebrune, 1884 and Spathidosepion Rochebrune, 1884 are here re-instated and formally recognised as valid. Sepia Linnaeus, 1758 and Sepiella Gray, 1849 are retained, but Metasepia Hoyle, 1885 is placed in alternative combination with Ascarosepion. The subgenus Digitosepia Lipiński, 2020 is well supported and is herein elevated to generic status. Sepia trygonina (Rochebrune, 1884) and Sepia hieronis (Robson, 1924) are placed in new monotypic genera Erythalassa gen. nov. and Lusepia gen. nov. respectively. Hemisepius Steenstrup, 1875, also monotypic, is recognised as valid based on a unique synapomorphy: the presence of a fleshy ridge on each side of the antero-ventral mantle that bears a longitudinal row of black pores, however, H. typicus Steenstrup, 1875, was not included in our molecular analysis as tissue samples could not be obtained. Sepia tuberculata Lamarck, 1798, the type species for the nominal genus Spathidosepion, was not included for the same reason. Based on the morphological similarity between S. tuberculata and the sequenced taxa, S. papillata Quoy & Gaimard, 1832 and S. angulata Roeleveld, 1972 we tentatively assign these two taxa to Spathidosepion pending future confirmation. Where possible, each genus is diagnosed based on a combination of morphological and molecular characters
    corecore