157 research outputs found

    Shift-and-scale model reduction:an alternative stability-preserving approach

    Get PDF
    A new stability-preserving model order-reduction method is presented for continuous-time systems. It makes use of the relatively new idea of transformed whole-system parameter matching for calculating the poles of the reduced-order transfer function. This has the advantage of using more of the system information than traditional methods in the approximation of the poles. The method is seen to be flexible and computationally attractive, relying only on readily available algorithms. It is based on a shift-and-scale transformation of the transfer function before applying the order-reduction process. Further, it is shown to be a viable alternative to existing stability-preserving techniques. Some examples illustrate the method

    The bilinear method:a new stability-preserving order reduction approach

    Get PDF
    A new way of reducing the order of linear system transfer functions is presented. It guarantees stability in the approximation of stable systems and differs from existing stability-preserving methods by taking into account whole system parameter information when obtaining the approximate poles, not just that of the system poles. It uses a bilinear transformation in the process, which renders the method more flexible than traditional techniques. Examples are given to highlight the advantages of the new approach

    The optical spectrum of a large isolated polycyclic aromatic hydrocarbon: hexa-peri-hexabenzocoronene, C42H18

    Full text link
    The first optical spectrum of an isolated polycyclic aromatic hydrocarbon large enough to survive the photophysical conditions of the interstellar medium is reported. Vibronic bands of the first electronic transition of the all benzenoid polycyclic aromatic hydrocarbon hexa-peri-hexabenzocoronene were observed in the 4080-4530 Angstrom range by resonant 2-color 2-photon ionization spectroscopy. The strongest feature at 4264 Angstrom is estimated to have an oscillator strength of f=1.4x10^-3, placing an upper limit on the interstellar abundance of this polycyclic aromatic hydrocarbon at 4x10^12 cm^-2, accounting for a maximum of ~0.02% of interstellar carbon. This study opens up the possibility to rigorously test neutral polycyclic aromatic hydrocarbons as carriers of the diffuse interstellar bands in the near future.Comment: 9 pages, 1 figure. Fixed a typo on the frequency of the 'b' ban

    The alteration of intra-ligand donor-acceptor interactions through torsional connectivity in substituted Re-dppz complexes

    Get PDF
    The ground and excited properties of a series of [ReCl(CO)3(dppz)] complexes with substituted donor groups have been investigated. Alteration of donor-acceptor communication through modulation of torsional angle and the number and nature of the donor substituent allowed the effects on the photophysical properties to be characterized though both computational and spectroscopic techniques, including TD-DFT, resonance Raman and time resolved infrared. The ground state optical properties show significant variation as a result of donor group modulation, with increased angle between the donor and acceptor blue-shifting and depleting the intensity of the lowest energy transition, which was consistently ILCT in nature. However, across all complexes studied there was minimal perturbation to the excited state properties and dynamics. Three excited states on the picosecond, nanosecond and microsecond time scales were observed in all cases, corresponding to 1ILCT, ππ* and 3ILCT respectively

    Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future

    Get PDF
    Changes in stratospheric ozone and climate over the past 40-plus years have altered the solar ultraviolet (UV) radiation conditions at the Earth's surface. Ozone depletion has also contributed to climate change across the Southern Hemisphere. These changes are interacting in complex ways to affect human health, food and water security, and ecosystem services. Many adverse effects of high UV exposure have been avoided thanks to the Montreal Protocol with its Amendments and Adjustments, which have effectively controlled the production and use of ozone-depleting substances. This international treaty has also played an important role in mitigating climate change. Climate change is modifying UV exposure and affecting how people and ecosystems respond to UV; these effects will become more pronounced in the future. The interactions between stratospheric ozone, climate and UV radiation will therefore shift over time; however, the Montreal Protocol will continue to have far-reaching benefits for human well-being and environmental sustainability.Peer reviewe

    Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses

    Get PDF
    The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal coronavirus disease (COVID-19) outcomes is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses, and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to intensive care units (ICU) with fatal COVID-19 outcomes, but not in individuals with non-fatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to ICU with fatal and non-fatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an original antigenic sin type-response

    Clinical evidence framework for Bayesian networks

    Get PDF
    There is poor uptake of prognostic decision support models by clinicians regardless of their accuracy. There is evidence that this results from doubts about the basis of the model as the evidence behind clinical models is often not clear to anyone other than their developers. In this paper, we propose a framework for representing the evidence-base of a Bayesian network (BN) decision support model. The aim of this evidence framework is to be able to present all the clinical evidence alongside the BN itself. The evidence framework is capable of presenting supporting and conflicting evidence, and evidence associated with relevant but excluded factors. It also allows the completeness of the evidence to be queried. We illustrate this framework using a BN that has been previously developed to predict acute traumatic coagulopathy, a potentially fatal disorder of blood clotting, at early stages of trauma care

    Synergies between the key biodiversity area and systematic conservation planning approaches

    Get PDF
    Systematic conservation planning and Key Biodiversity Areas (KBAs) are the two most widely used approaches for identifying important sites for biodiversity. However, there is limited advice for conservation policy makers and practitioners on when and how they should be combined. Here we provide such guidance, using insights from the recently developed Global Standard for the Identification of KBAs and the language of decision science to review and clarify their similarities and differences. We argue the two approaches are broadly similar, with both setting transparent environmental objectives and specifying actions. There is however greater contrast in the data used and actions involved, as the KBA approach uses biodiversity data alone and identifies sites for monitoring and vigilance actions at a minimum, whereas systematic conservation planning combines biodiversity and implementation‐relevant data to guide management actions. This difference means there is much scope for combining approaches, so conservation planners should use KBA data in their analyses, setting context‐specific targets for each KBA type, and planners and donors should use systematic conservation planning techniques when prioritizing between KBAs for management action. In doing so, they will benefit conservation policy, practice and research by building on the collaborations formed through the KBA Standard's development

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements

    Diving into the vertical dimension of elasmobranch movement ecology

    Get PDF
    Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
    • 

    corecore