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Abstract

A new way of reducing the order of linear systeam$ferfunctions is
presented. It guarantees stability in the apprakion of stable systems and
differs from existing stability-preserving methdastaking into account whole
system parameter information when obtaining the@pmate poles, not just that
of the system poles. It uses a bilinear transftionan the process that renders
the method more flexible than traditional techngju&xamples are given to

highlight the advantages of the new approach.
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1 INTRODUCTION

For many years now, the use of reduced-order rsadealontrol system design
has become a necessity, due to the ever-increasimglexity of the requirements to
meet modern technological demands. In partictit@ approach of linearising system, or
sub-system, models before order reduction has dreeey popular and successfi-3)

Many sophisticated methods have evolved to retheerder of linear systems
(4) and each can usually boast its relative advantagasthe others. Knowing which
method to use has become something of an art adesigners and of course depends
upon the system characteristics to be approximdedh of the information gathered
when modelling a system tends to be in the frequeelomain (continuous or discrete)
and thus the so-callddequency-domain order reduction methods retain a high profile in
control system design.

These methods can be classified roughly intowledategories of:

(i) those that approximate or retahole system parameters;

(i) those thaguarantee a stable reduced-order model from a stable system.

In category (i), the benchmark was set by, amohgrst the ideas of Chen and Shig)
Chuang(6) and Davidson and Luc#g). Basically, these approaches matched as many
system time momen{$) and Markov paramete(8) or general-point (shifted time
moments)7) as possible between the full and reduced-order mode category (ii), the
so-called Pole RetentigB), Routh(9), SchwarzZ10), Stability Equatior(11) and
Differentiation(12) methods provided the foundation for others todait.

It is generally recognised that approximationswaer through the methods of
category (i), when stable, tend to be better ovérah those achieved by the methods of
category (ii). To a large extent this is undoubtetlie to retaining morehole system

information in the form of (shifted) time momentsdéor Markov parameters. Although
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the methods of category (ii) can also retain wisgitem parameters, generally these
amount to half the number preserved by those egoay (i). The price to pay for
guaranteed stability preservation is that the steddluced-order transfer function’s
denominator is calculated first, from the full tsé&r function’s denominator, leaving only
its numerator to be obtained by matching the whgtem parameters.

The purpose of this paper is to put forward a s&ahility-preserving order-
reduction method for continuous-time transfer fior. It differs from existing methods
in that, instead of using the full transfer funat®ddenominator only to calculate the
approximate polegransformed whole system parameters are used to obtain tluss. p
It is seen that the system characteristics teit tanore accurately approximated using
this approach than is the case for the more taawitistability-preserving methods.
Further, a degree of flexibility is built into timethod such that models can be improved
upon by adjusting a single parameter in a bilinersformation. Numerical examples

are given to illustrate the advantages of the ntetho

2 BASIS OF THE METHOD

Lucas and SmitfiL3) recently developed a stability-preserving ordeluction
method for discrete-time transfer functions. Thegdithe idea of matching whole system
Markov parameters to the reduced-order model éastisquares Padé approximation
sense. The results obtained by this technique guate startling and were seen to rival
optimal models(14). It is therefore natural to ask whether this apph can be usefully
employed in the continuous-time case and whatta@lvantages over existing stability-
preserving methods? The answers to these questibiopefully become clear in the

following paragraphs.



Consider the problem of reducing the stablda order, linear, continuous-time

transfer function, given in usual notation by

G(9) =22 @

Gk (S) = Kk k-1 (2)

Further, it is required that the poles®{(s) are stable, that is, they all lie in the left-half

of thes-plane. In order to satisfy this stability requient, it is proposed to use a bilinear
transformation or5(s) such that its poles are mapped into the unitesirdlhis is

achieved using the transformation

_2(z-1
S_T(z+1j ®)

which is a well-known transformatidqi5) used extensively in digital-filter design. It can
be thought of as discretizing the continuous sydigmsing therapezium-rule
approximation for the integral operators in the eugal solution of the governing system
differential equation, wher€ is the sampling time interval. Foér = 2, thestandard

bilinear mapping results and it will be shown ttras often gives sufficiently accurate
approximations. The computational effort requitedarry out this transformation and
its inverse is quite modest and can be achieveahtsfficient Routh-type algorithm, as
shown by Davie$16).

After applying this transformation, suppose tgs) is mapped tdH (z) , given

by




The whole system Markov parametensof H(z) can now be calculated by a simple

long-division algorithm, or by the recurrence relat

1 i-1 .
m :a_n{'gn_i —jgomja'm_j_i} i=012,.
B; =0 forj<0
where H(z) = 5 ﬂ
i=0 Z

The order reduction process begins with obtainingdaiced-degree transfer function

denominator polynomiaD, (z) in the z-domain approximation ¢f(z). A stable

approximation will be guarante€tl3) by finding the least-squares solution of the Imea
set

MJd=m 4)

.
where, & = [é](_l O_p woene o, 50} is the vector of th&'th degree denominator

k-1 .
approximationD, (z) = *+3 27,
i=0

me My . m o my —My
My M o My My —Meo
Mo My - . My My M3

M= and m=

Notice that equation (4) comes from directly equathe Markov parameters &f(2z)
and its approximatioH, (z) = N, (2)/ D, (2) ; the structure of the resulting equations is
such that the denominator approximatibp(z) can be found without reference to the

numerator approximatian, (z) . Further, this calculation involves (theoretignkll of



the Markov parameters df (z) exceptm,. Also, for a stable systedm| - 0 as

i - oo, so thatM andm can be truncated at a suitable poirt gk).

The least-squares solution of equation (4) ismgive
6=(MTM )'1|v| "m (5)
which in turn specifies the pole locations in théamain of the reduced-order model.
These poles will lie within the unit circle and ghapplying the inverse bilinear

transformation

_1+3sT
1-35sT

(6)

to the approximate denominator polynomial will migproots back into the left-half of
thes-plane, giving the pole locations of the final redd-order model.

It should be emphasised here that the main diiterdetween the approximate
transfer function’s denominator obtained by thighnd and those of existing stability-
preserving approaches is that of using whole sygi@mameter information, albeit in a

transformed domain. All of the Markov parametenscept the first) oH (z) are used in

the calculation, which approximate to the puls@oase values of the discretization of

G(s). Itis felt that matching these system parametessleast-squares Padé sense

enables an approximate pole distribution that exled to reflect the system'’s transient
response characteristics appropriately. Existinthous use the system pole distribution
only and do not take the zero distribution intocasd when formulating these
approximate poles. In the next section, examplieidirates the advantage of the
suggested method over existing methods in thiseatsp

To calculate the numerator of the reduced-ordaestea function it is proposed to
use an existing sub-optimal techniqd&). This minimises the integral-square-error

(ISE) index, given the reduced-order transfer fiomt¢ denominator, defined by
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Z[y(t) — yi (]2t

wherey(t) and y, (t) are the responses of the full and approximatesysfor a given

input. Of course, the bilinear transformation qéiations (3) and (6) can also be used to
obtain the reduced-degree numerator polynomiataaghe more traditional methods of
matching system time moments and/or Markov param@tehes-domain. However,
the ISE is a reliable measure of the accuracy oafipeoximation and is widely used in
control system design. Also, because this algorithreadily available and needs only
the coefficients of the full system transfer funatiand those of the reduced-order transfer
function’s denominator, then it can be readily &pto obtain theptimal reduced-
degree numerator f@ny existing stability-preserving method. This givefsia basis on
which to compare different techniques, allowingyothle denominator derivations to be
different.

In summary, the steps to follow to obtain the mtltorder transfer function by

the Bilinear method are:

) apply the bilinear transformatiosnzé(%j to G(s) and obtainH (2) ;
z

(i) calculate sufficient Markov parameters Hf(z) to use in its approximation
H,(2), resulting in equation (4);
(i)  obtain the stable approximatredomain denominator polynomi&, (z) given by

the least-squares solution in equation (5);

1s
(iv)  apply the inverse bilinear transformatiar 1 f - to D, (2) , mapping its roots

2

into the left-half of thes-plane;



(v) use the ISE minimisation algorithm to obtain teduced-order transfer function’s

numerator for the given approximate denominatatep (iv).

3 ILLUSTRATIVE EXAMPLES AND DISCUSSION OF RESULTS
Example 1

To demonstrate in a simple way the advantage afjushole system parameters
in deriving the approximate model’s poles, consalénird-order system with poles at
—00B and-1 £ 2j. The three cases of 0, 1 and 2 system zaiblse considered
respectively, as might be encountered in a tymlealgn problem. The accuracy of the

approximation is measured by tretative ISE value, defined by
= It -y (D1 dt = ] yX(1)
0 0

where the full and approximate respons€y andy, ¢ ) respectively are due to an

impulse input. In all three cases, the valu& of equation (3) is taken to be 2 for initial
simplicity, which corresponds to using tstandard bilinear transformation. Also, the
number of Markov parameters used in the least-sguRadé equation (4) is 30.
Although similar approximations result for halftbis number, the stability preservation
property(13) theoretically applies only when using the infinitember of Markov

parameters oH (z) . So, taking a sufficiently large enough numbesugas that this
property will hold. Notice that when the modulitbe my in equation (4) are very small,

the corresponding equations do not make a significantribution to the least-squares
solution in equation (5) and so can be safely igdor
0] For no zeros, the system transfer functioniveg by

1

G(s) =
(s) 2s° +55°+ 1%+ 5




(ii)

Second-order models of the type given by equdpnwithk = 2, are now
calculated by the Bilinear method and the mainiktgipreserving methods, all
enhanced by applying the algorithm to obtgptimal transfer function numerators

after the denominator calculati¢hi7). The results are shown in Table 1.

Table 1
Method d, d, g & I
Routh -0[0409 02517 288 - 545%
Schwarz -00278 01944 p.0] 0 355%
Stability Equation|—-0[0043 00664 @ 10 4489%
Differentiation -0[0792 (4661 8 0 1802%
Bilinear -0[0625 (03456 368815 18851 &3%

From these results, the Schwarz method givebabelSE value followed
closely by the Routh method, with the Bilinear neetlyiving a reasonable third-
lowest value. Perhaps it is no surprise thatsy@tems with no zeros, the
Schwarz and Routh methods should give such gooaxsippations (although this
also depends upon the pole distribution of theesygsbecause the system
characteristics are dominated by the informatioma&ioed in the transfer
function’s denominator. However, the results for Differentiation and Stability
Equation methods are disappointing in this respect.

A minimum-phase zero a$ = -1 is now introduced to the system, so that

s+1

G(s) =
(s) 28 +582+1X+ 5

Reduction to a second-order model using the saatbads as before gives the

results in Table 2.



(iii)

Table 2

Method d, d, Y & I

Routh @931 (03008 288 2 27105%
Schwarz @111 Q2222 D 10 2284%
Stability Equation| 0603 Q0707 @ 10 4601%
Differentiation MO65 @7038 8 0 1398%
Bilinear -00289 08645 48768 47| 600%

It is interesting to see from Table 2 that altho# existing stability-
preserving methods give ISE values that are probadtiyacceptable. They also
retain the same approximate poles as in the prevaase, highlighting their
insensitivity to the effect of the system zero.ctmtrast, the Bilinear method
gives the best ISE value by far, with the poles ¢p@mtomatically adjusted
through the matching of the whole system parameters

Another (non minimum-phase) zero is now addedhe system at= 025 to give

4s% +3s-1
G(s) =
(s 28 +582+1X+ 5

As before, reducing this system to second-ordedaisoby the various methods

gives the results in Table 3.

Table 3
Method d, dy e & I
Routh A820 -07474 7288 2 2041%
Schwarz [B667 —0B667 y.() 10 2934%
Stability Equation| 3190 -0(3121 @ 10 7817%
Differentiation B342 -01822 8 30 1947%
Bilinear 3849 -02377 31388 43444 ®5%
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Again, Table 3 shows starkly the effect that chiagghe system zeros has
on the reduced-order models. Only the Bilinearnoéttakes this information
into account in the calculation of the approximatées and gives probably the

only acceptable reduced-order model.

Example 2
This example illustrates the flexibility of the giv Bilinear method by changing
thediscretization parametet in equations (3) and (6). Consider the seventlerord

system with transfer function

s® +32[6s* + 3863+ 2076%+ 54X 2240

G(s) =
() s’ +15s° + 124°+ 63@8*+ 21443+ 46GF+ 5856 28

which has poles atl, -2 + 2j,-3 * 3j,-2 * 4j and zeros at053, -4 + 4j,-10,-14.

Third and second-order models are derived forgyssem by the Bilinear method,
again using 30 Markov parameterstéfz) in equation (4), for various valuesbf For
comparison, models derived by the Routh and Schmeathods withoptimal numerators
(17) are also given in the form of equation (R}(3 and 2). The results are given in

Tables 4 and 5 respectively.

Table 4
Method d, d, d, e e & I
Routh -02106 66093 @123 34362 48629 23916 | 2(B8%

Schwarz —001510 33914 25879 22175 37658 34164 | 8I3%
Bilinear T = 2) | -1[0981 &3064 %7743 37883 %7465 63748 | M™5%
Bilinear T = 1) | -09437 76026 43305 31630 &827 49796 | 514%
Bilinear T = 038)| -04167 41373 174729 38967 112639 1711 392%
Bilinear T = O1)| -0[0303 @8286 274918 36854 130923 230546 578%
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Table 5

Method d, d, e & I
Routh 14308 (7882 16516 @8123] 51B9%
Schwarz 2102 18446 19053 15407 5198%

BilinearT=2) | 0B461 35013 13926 31818 2B0%
BilinearT=1) | -02350 55405 14700 38121 @38%
Bilinear T = O0B)| -0B474 65467 17373 68504 428%
Bilinear T = O1)| —011892 32447 @B120 62355 2B3%

Of the third-order models in Table 4, only the Rourodel gives a disappointing
ISE value. There is little to choose between thevéch model and the (standard)
Bilinear model forT = 2; however, the ISE values decrease significanttiie Bilinear
models forT = 1 andT = 0B8. This ability to change the value Divhile still preserving
stability in the model gives the Bilinear methodaatditional attribute that most existing
methods do not have.

It is clear from the Bilinear model far= O that the ISE value does not
necessarily get smaller with so an element of judgement is required by thegdesto
decide on a satisfactory value for this parameliedeed, this could be an area for further
research into the method. Further, it is intengsto note that theptimal third-order
model for this system, i.e. the one that givesattteial minimum ISE valugl8), has a
relative ISE of 212%. The Bilinear model for = 035 is seen to compare well with this
value.

For the second-order models in Table 5, the ragidrobration in the accuracy of
the approximations is clear for most of the models;exceptions being the Bilinear
models forT = 1 andT = OB respectively. The point made previously aboutintathe

value ofT too small is illustrated well in the caseTof 01, it looks to be a worse
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approximation than in the standard casé& ef2. Again, it is of interest to note that the
optimal second-order model for this systél8) gives a relative ISE value ofi8%,
which is close to that obtained by the Bilinear middr T = 05.

Figure 1 compares the impulse response curveedithsystem with those of the
third and second-order approximations obtainechbyBilinear method for = 05. It is
seen that both approximations are very good.

The method can also be used for step and polynanpiats by considering the
transient-response part of the system transfer funcfic®). For example, for a step
input, the transfer function

(5= S-C0)

would be used by the method to obtain a reducededetenominator for the approximate
poles. The reduced-degree numerator would thesbtaéned by ISE minimisation with

the constraint that the first Markov parameteiRg$) be retained. This will always be
—-G(0) and ensures that a proper approximate transfetiumG, (s) results from

Gy () = sR(s) +G(0)
Applying this procedure to the given seventh-osiatem, using = 05, gives the third-
order model

-1[429&° + 816854+ 411718
s®+3[280%%+ 911794+ 51363

Gs(s) =

which has a relative ISE of98%, indicating an excellent approximation. TISis i

confirmed in Figure 2, which shows a comparisothefstep response curves f8(s)

and G;(s) ..
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4 CONCLUDING REMARKS

A new stability-preserving order-reduction meth®gresented that applies to
continuous-time transfer functions. It differsrrexisting stability-preserving methods
in that the approximate model’'s poles are calcdl&@m whole system parameters rather
than only from the system’s poles.

The whole system parameters are the Markov paeamet the transformed
transfer function, obtained through a bilinear magphat essentially discretizes the
continuous system. This also gives the method eegerf flexibility by being able to
vary the sampling-time parametein the bilinear transformation. The powerful leas
squares Padé method for discrete-time systemsiisubed to advantage to obtain the
approximate stable pole distribution before mappimg back into the originaplane.
Finally, the method is enhanced by applying antesgdSE minimisation algorithm to
calculate the reduced-degree numerator of the appate transfer function.

Although the Bilinear method differs fundamentdhgm existing methods in the
way that it obtains the approximate poles, the ggegemains two-staged. This means
that the denominator and the numerator of the mdhacder transfer function are
calculated successively, as in existing stabilityserving methods. As such, it is to be
expected that sometimes reduced-order models @otdiyn methods that directly retain
the maximum number of whole system paramgters, 18)can give better overall
approximations, when stable. Inevitably, thisastpf the trade-off made by
guaranteeing stability in the approximation. Hoesmthe examples given show that the
method makes a valuable contribution to the stgkplieserving approach in model
order-reduction.

Overall, the Bilinear method has modest computalicequirements, especially

when compared to those having to utilise root-fagdalgorithmg8, 11) The procedures
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of bilinear mapping, Markov parameter calculati@ast-squares solution, inverse
mapping and ISE minimisation all rely on efficigtduth-type algorithms and solving
linear sets of equations. Perhaps, with today&lalble computing power, this aspect of
a method is not quite so important as it once wéswever, the Bilinear method’s

reliance only on well-established algorithms makestractive to use.
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Legends for Graphs

Figure 1:
Impulse response of system
————— Impulse response of third-order model
--------------------------- Impulse response of second-order model
5 Figure 1
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Figure 2:

Step response of system

————— Step response of third-order model
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