1,094 research outputs found

    Water use and yields of no-till managed dryland grasspea and yellow pea under different planting configurations

    Get PDF
    Grasspea (GP) (Lathyrus sativus) is a drought-tolerant legume that can be grown for forage and grain. It has potential value to be used as a nitrogen-fixing crop in dryland rotations with non-legume grain crops. However, the agronomy of GP for the Central Great Plains region have not been investigated. The objective of this research was to compare the grain and biomass yield, as well as N accumulation of GP relative to field pea (FP) in two planting configurations. We carried out a 3-year field experiment to compare dryland GP with Admiral yellow field pea (Pisum sativum) in two configurations: (1) a wide row spacing with lower population (WL) with 76-cm rows with 75 kg seeds planted per ha, and (2) a narrower row spacing with a higher population (NH) with 19-cm rows with 136 kg seeds planted per ha. We measured the biomass, grain yield, N content, and soil water use. Our results show that the NH treatment out-yielded the WL treatment in both pea species. The GP had higher yield than FP on the lowest yielding year, while FP yielded better when overall yields were higher. Biomass production was also higher for the NH configuration, and GP was a higher biomass producer than FP over the 3-year study. The GP had higher N concentration in shoots and seed compared to FP, indicating higher N-fixing capacity. The FP matured faster than GP, and had marginally higher grain water use efficiency than GP. Our results show that GP is a viable alternative legume for the Central Great Plains, with comparable yields in low precipitation years. However, the longer growing season required by GP to mature has water use implications in years with reduced water availability in mid to late summer

    Landau-Khalatnikov-Fradkin Transformations and the Fermion Propagator in Quantum Electrodynamics

    Get PDF
    We study the gauge covariance of the massive fermion propagator in three as well as four dimensional Quantum Electrodynamics (QED). Starting from its value at the lowest order in perturbation theory, we evaluate a non-perturbative expression for it by means of its Landau-Khalatnikov-Fradkin (LKF) transformation. We compare the perturbative expansion of our findings with the known one loop results and observe perfect agreement upto a gauge parameter independent term, a difference permitted by the structure of the LKF transformations.Comment: 9 pages, no figures, uses revte

    Effect of oleic acid supplementation on prostaglandin production in maternal endometrial and fetal allantochorion cells isolated from late gestation ewes

    Get PDF
    Elevated circulating non-esterified fatty acids including oleic acid (OA) are associated with many pregnancy related complications. Prostaglandins (PGs) play crucial roles during parturition. We investigated the effect of OA supplementation on PG production using an in vitro model of ovine placenta

    Classification of multipartite entangled states by multidimensional determinants

    Full text link
    We find that multidimensional determinants "hyperdeterminants", related to entanglement measures (the so-called concurrence or 3-tangle for the 2 or 3 qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the n4n \geq 4 qubits), contrary to the widely known bipartite or 3-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.Comment: revtex4, 10 pages, 4 eps figures with psfrag; v2 title changed, 1 appendix added, to appear in Phys. Rev.

    Classical Open String Models in 4-Dim Minkowski Spacetime

    Full text link
    Classical bosonic open string models in fourdimensional Minkowski spacetime are discussed. A special attention is paid to the choice of edge conditions, which can follow consistently from the action principle. We consider lagrangians that can depend on second order derivatives of worldsheet coordinates. A revised interpretation of the variational problem for such theories is given. We derive a general form of a boundary term that can be added to the open string action to control edge conditions and modify conservation laws. An extended boundary problem for minimal surfaces is examined. Following the treatment of this model in the geometric approach, we obtain that classical open string states correspond to solutions of a complex Liouville equation. In contrast to the Nambu-Goto case, the Liouville potential is finite and constant at worldsheet boundaries. The phase part of the potential defines topological sectors of solutions.Comment: 25 pages, LaTeX, preprint TPJU-28-93 (the previous version was truncated by ftp...

    A one-dimensional lattice model for a quantum mechanical free particle

    Get PDF
    Two types of particles, A and B with their corresponding antiparticles, are defined in a one dimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts as a source for the polarization field of the other type of particle with nonlocal action but with an effect decreasing with the distance: A -->...\bar{B} B \bar{B} B \bar{B} ... ; B --> A \bar{A} A \bar{A} A ... . It is shown that the combined distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.Comment: 8 pages. Revte

    Tomography of fast-ion velocity-space distributions from synthetic CTS and FIDA measurements

    Get PDF
    We compute tomographies of 2D fast-ion velocity distribution functions from synthetic collective Thomson scattering (CTS) and fast-ion D-alpha (FIDA) 1D measurements using a new reconstruction prescription. Contradicting conventional wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute accurate tomographies of arbitrary 2D functions under idealized conditions. Under simulated experimental conditions, single-view tomographies do not resemble the original fast-ion velocity distribution functions but nevertheless show their coarsest features. For CTS or FIDA systems with many simultaneous views on the same measurement volume, the resemblance improves with the number of available views, even if the resolution in each view is varied inversely proportional to the number of views, so that the total number of measurements in all views is the same. With a realistic four-view system, tomographies of a beam ion velocity distribution function at ASDEX Upgrade reproduce the general shape of the function and the location of the maxima at full and half injection energy of the beam ions. By applying our method to real many-view CTS or FIDA measurements, one could determine tomographies of 2D fast-ion velocity distribution functions experimentally
    corecore