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a  b  s  t  r  a  c  t

Grasspea  (GP)  (Lathyrus  sativus)  is a drought-tolerant  legume  that can  be  grown  for  forage  and  grain.
It  has  potential  value  to  be used  as  a nitrogen-fixing  crop in dryland  rotations  with  non-legume  grain
crops.  However,  the agronomy  of  GP  for the  Central  Great  Plains  region  have  not  been  investigated.  The
objective  of this  research  was  to compare  the  grain  and  biomass  yield,  as  well  as  N  accumulation  of
GP  relative  to field  pea  (FP)  in  two planting  configurations.  We  carried  out a  3-year  field  experiment  to
compare  dryland  GP  with Admiral  yellow  field  pea  (Pisum  sativum)  in two  configurations:  (1)  a  wide
row  spacing  with  lower  population  (WL)  with  76-cm  rows  with  75  kg seeds  planted  per ha, and  (2)  a
narrower  row  spacing  with  a higher  population  (NH)  with  19-cm  rows  with  136  kg  seeds planted  per
ha.  We measured  the  biomass,  grain  yield,  N content,  and  soil  water  use.  Our  results  show  that  the NH
treatment  out-yielded  the  WL  treatment  in both  pea  species.  The  GP  had  higher  yield  than  FP on  the
lowest  yielding  year,  while  FP yielded  better  when  overall  yields  were  higher.  Biomass  production  was
also higher  for the  NH configuration,  and  GP  was  a higher  biomass  producer  than  FP over  the  3-year
study.  The  GP  had  higher  N  concentration  in shoots  and  seed  compared  to  FP,  indicating  higher  N-fixing
capacity.  The  FP matured  faster  than  GP,  and  had  marginally  higher  grain  water  use  efficiency  than  GP.
Our  results  show  that  GP  is  a viable  alternative  legume  for the  Central  Great  Plains,  with  comparable
yields  in  low  precipitation  years.  However,  the  longer  growing  season  required  by  GP  to  mature  has
water  use  implications  in  years  with  reduced  water  availability  in  mid  to late  summer.

Published  by  Elsevier  B.V.

1. Introduction

Early-seeded cool-season legumes are desirable for the Central
Great Plains region because they avoid hot/dry weather during ger-
mination and grain filling, and are harvested early, before planting
of the subsequent winter crop (e.g. winter wheat Triticum aes-
tivum). Grasspea has been produced in Europe, western Asia, and
Africa (Osman and Nersoyan, 1986), and could be a good alterna-
tive crop. The GP is considered drought resistant (Palmer et al.,
1989), and during years of sparse precipitation GP is often one of
the few crop species producing a harvestable yield. The water use
efficiency of GP has been found to be greater than other legumes
(Biederbeck and Bouman, 1994). However, GP seeds harbor several
anti-nutritional factors, and also contain variable concentrations of
a neurotoxin (Rao et al., 1964) so they should be consumed as part
of a diverse diet.

Dryland agriculture in the Central Great Plains consists predom-
inantly of winter wheat–summer fallow in which grain is harvested
only every other year, allowing for soil water recharge during the

∗ Corresponding author. Tel.: +1 970 345 2259; fax: +1 970 345 2088.
E-mail address: francisco.calderon@ars.usda.gov (F.J. Calderón).

fallow period. The main limiting factor for crop yields in this semi-
arid region is water, followed by N and P fertility. Soil recharge
is not very efficient during the summer months of the fallow
phase (Nielsen and Vigil, 2010), so it has been suggested that sum-
mer  crops should follow wheat for a more efficient use of water
(Peterson et al., 1996). Adding summer crops to increase the rota-
tion intensity can have beneficial effects on soil quality, but there is
a tradeoff in terms of wheat yields (Vigil and Nielsen, 1998). Water
use by legume cover crops in semiarid areas can result in a subse-
quent decrease in wheat yield, resulting in a cost that is not offset
by the N2 fixation benefit (Nielsen and Vigil, 2005). Legumes grown
during what otherwise would have been a fallow period can cause
a reduction of up to 1050 kg ha−1 on subsequent wheat yield. This
yield penalty, however, can be reduced if the cover crop or forage is
terminated early, allowing for soil water recharge in late summer
(Vigil and Nielsen, 1998).

Harvesting and selling peas as forage or grain rather than as a
cover crop can offset some of the economic losses incurred due to
depressed wheat yield. However, selling the forage or grain means
that less N is returned to the soil, so there is a cost–benefit consid-
eration to this practice. While the present situation is not favorable
for cover cropping, the economics of N2 fixation may  likely change
in the coming years. Fertilizer price increases will eventually make

0378-4290/$ – see front matter. Published by Elsevier B.V.
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crop rotations with N2-fixing legumes more economical, and inter-
est in organic agriculture makes N2-fixation a desirable trait, even
if all of the legume biomass is not completely returned to the soil as
a cover crop. In addition to the fertilizer-savings benefit, replace-
ment of fallow with a broadleaf crop can minimize the loss of soil
through erosion. Because of this, dryland rotations containing peas
can produce greater crop biomass and soil carbon compared to
wheat–fallow (Sainju et al., 2007). In order to increase crop diver-
sity, farmers should have at their disposal a variety of adapted
legume species, so research about new legume alternatives is war-
ranted.

While GP has been grown successfully in both the southern and
northern plains (Rao et al., 2005; Rao and Northup, 2008), no studies
about the agronomy of GP have been carried out under the challeng-
ing evaporative demand and low precipitation conditions found in
the high Central Plains. Grasspea is commonly grown using 76-cm
row spacing in the cooler and wetter Northern Plains. However,
in the high Central Plains, peas (Pisum sativum) are grown in nar-
rower row spacing in order to achieve quick leaf area development
and canopy closure for weed control. Previous studies on grasspea
in Canada, Australia, and the US used row spacings that spanned
from 18 to 60 cm (Biederbeck and Bouman, 1994; Rao and Northup,
2008; Siddique et al., 2001). Responses of legume performance to
row spacing may  be affected by plant variety (Grau et al., 1994),
year/location (Lueschen et al., 1992), as well as tillage and plant-
ing time (Oplinger and Philbrook, 1992). These variations in row
spacing and canopy density can enhance crop growth rate, dry mat-
ter production, and grain yield (Bullock et al., 1998; De Bruin and
Pedersen, 2008). Row spacing, however, can have different effects
on crop yields depending on the latitude (Lee, 2006), so the opti-
mal  row spacing for a particular geographic location needs to be
determined. Water stress has also been shown to lessen the yield
advantage of narrow row spacing (Devlin et al., 1995), so multi-year
studies with varied precipitation are needed.

The objective of this study was to determine the production
potential of GP on the High Plains based on measurements of dry
matter production, seed yield, and water use efficiency in two dif-
ferent planting configurations, and in a side-by-side comparison
with the more common FP.

2. Materials and methods

The research plots were established on a Weld loam (fine,
smectitic, mesic Aridic Argiustolls) located at the USDA-ARS Cen-
tral Great Plains Research Station (40.15◦N, 103.15◦W).  Prior to
the experiment, four soil samples (0–20 cm depth) were obtained
from the research plots, sieved free of plant debris and rocks, and
sent for analysis to Olsen’s Agricultural Laboratory, Inc. (McCook,
Nebraska). The soil had an average pH of 6.2 (1:1 suspension), 1.73
percent organic matter (loss-on-ignition), 0.62 mmhos cm−1 solu-
ble salts, 29.8 ppm bicarbonate P, 670.5 ppm NH4Oac-extractable
K, and 36:39:25 sand:silt:clay content. The area is under a semi-
arid climate with nearly 420 mm average annual precipitation, at
an elevation of 1384 m above sea level.

The GP and FP were planted on proso millet (Panicum miliaceum
L.) residue in 4.5 × 9 m plots within a randomized complete block
design. There were four replications, two planting configurations
(NH and WL)  and two crop species for a total of 16 experiment
plots each year. Each year the plots were moved into a new adja-
cent area in order to plant into millet residue. The GP cultivar was
AC Greenfix (Dakota Frontier Seeds, Flasher, ND), and the FP cultivar
was DS Admiral yellow pea. The seeds were coated with Micronoc
dry inoculant (Texas Earth, Brownfield, Texas). The average (stan-
dard deviation) of the soil mineral N (ammonium plus nitrate N) in
the 16 experimental plots was 7.9 (5.0) mg  N kg−1 at planting time

in 2007, and no N fertilizer was  applied during the 3-year experi-
ment. The seeds were sown in early May  each year, and the plots
were harvested in July. Every year, Prowl (pendimethalin) herbicide
was applied pre-emergence, and Select (clethodim) herbicide was
applied to control grassy weeds. For the WL  configuration, we used
a MaxEmerge Plus Vacumeter planter (John Deere, Moline, Illinois,
USA). For the 19-cm rows, we used a John Deere 750 no-till grain
drill. The in-row seeding density of the 76-cm rows was maximized
in order to lessen the population difference between planting con-
figuration treatments. The 19-cm rows had 14 seeds per meter
length of row, while the 76-cm rows had 31. At this seeding rates,
the population of the 19-cm row treatments was 136 kg seed ha−1,
while that of the WL  was  75 kg ha−1. Because of the seeding popu-
lation difference, this study cannot be seen as a strict comparison
of two  different row spacings, but rather as two different planting
configurations that vary in their row spacing but have populations
akin to what farmers would use for each row spacing setting.

2.1. Soil water

Soil profile water to 1-m depth was measured throughout the
growing season. One Delta T PR2 Probe (Delta-T Devices Ltd., Cam-
bridge, UK) access tube was installed in the middle of each of the
16 experimental plots, in the center of a planted row. Water use
efficiency (WUE) was  calculated as:

Crop yield (kg ha−1)
Water use (mm)

where water use was  estimated as stored soil water at planting
minus ending water at harvest, plus growing season rain recorded
at a weather station located ∼300 m from the site.

2.2. Biomass and growth stage

Plots were sampled periodically during the growing season by
cutting a 122 cm length of row at ground level. Samplings were
carried out approximately every two weeks in 2007 and 2008, but
only the biomass at harvest was sampled in 2009. The biomass from
each plot was placed in mesh bags, dried at 60 ◦C, and weighed.

2.3. Yield and tissue N

Plants were harvested at grain maturity and sampled in the same
manner as for the biomass. The dry biomass was  separated by hand
into stems, leaves, seed, and pod shells. Harvest row segments were
not adjacent to areas sampled for biomass earlier in the season.
The pod shells + leaves + stems, without the grain, were pooled to
constitute the plant sample for C and N analysis. Then, the plant and
grain samples were ground separately with a Retsch mill (Retsch,
Haan, Germany). Duplicate ground plant and grain samples from
each plot were analyzed for total C and N concentration with a
LECO CN-2000 analyzer (LECO Corporation, St. Joseph, MI).

2.4. Soil mineral N

Mineral N was  analyzed at planting and at harvest in 2007, and
also in May  2008 (pre-plant for the 2008 growing season), in order
to measure differences in N supplying capacity for the different
treatments. Mineral N was  extracted from 10 g soil samples with
25 mL  of 2 M KCl. Nitrate NO3-N and ammonium NH4-N were deter-
mined using a Lachat Flow Injection Analyzer (Lachat Instruments,
Loveland, Colorado).
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2.5. Statistical analyses

The 16 plots were placed on four randomized complete blocks.
The design was relocated and randomized every year when the
plots were established by no-till planting directly into the previous
year’s millet stubble. The Proc GLM of SAS 9.2 (SAS Institute Inc.,
Cary, NC) was used to perform ANOVA. The mean separations were
carried out using Duncan’s Multiple Range Test feature of SAS.

3. Results and discussion

3.1. Soil water

Growing season rainfall during the 3-year experiment ranged
from 95 to 250 mm,  with the highest numbers each year for GP,
due to the longer growing season (Table 1). The soil water difference
between the first and last samplings of the season indicates the soil
water extraction for each species, and was higher in GP than in FP
for 2007 and 2008 (Table 1). Year 2009 was unusually wet and cool,
with surplus water available to the crops as indicated by the larger
amount of ending soil water relative to the previous years. 2008
had the lowest ending water, suggesting that this was  the most
water-limiting year of the experiment.

The difference between beginning soil water at planting and
ending soil water had a year effect (P < 0.0001), and a marginally
significant pea species effect (P < 0.10). The lowest values were
recorded in 2009, because of high rainfall and cooler temperatures.
The GP extracted more water than FP in the drier years of 2007 and
2008. However, most of the soil water extraction occurred from
the 40-cm depth and above, and there was little water extracted
from 1 m soil depth in any of the treatments, even during the drier
2008 year (data not shown). These results agree with Biederbeck
and Bouman (1994) who found that GP extracted water primar-
ily from the top 0.6 m at the full bloom stage in Canada. However,
they also observed that during a drought year, considerable water
depletion occurred below 0.6 m.  Similar to our results, Siddique
et al. (2001) found that GP and L. cicera had higher water extraction
than P. sativum under conditions favorable for root penetration.

3.2. Grain yield

The ANOVA indicates that most of the variability in grain yields
was due to planting configuration and year effects, not pea species
(Table 2). Throughout the 3-year study, grain yields ranged from
716 to 2956 kg ha−1, with the highest yields on the unusually wet
2009 summer (Table 3). The planting configuration effect was  due
to the large 95% increase in yields in the NH over the WL  (Table 3).
The species with year interaction (Table 2) occurred because GP
had a higher yield than FP when grown as NH in 2008 (Table 3), the
year with the least stored soil water (Table 1) and lowest yields.
The highest yield for the experiment was achieved by the FP in NH
during the high precipitation summer of 2009, suggesting that this
species is more responsive to higher rainfall (Table 3). Others have
found that P. sativum generally yields better than GP over a wide
range of sites and years in a Mediterranean environment (Siddique
et al., 1999). Our results indicate that GP and FP can out yield each
other depending on environmental conditions, which in turn can
vary widely in the high altitude, semiarid, continental climate of
the Central Plains.

3.3. Biomass yield

Biomass at harvest followed similar ANOVA result patterns as
the grain yield, except that there was a pea species effect besides
the year and planting configuration main effects (Table 2). Biomass

was 88% higher for the NH than the WL  (Table 3), and the high-
est amounts occurred on 2009 (Table 4), as with the grain yield.
This effect can be explained by the increased effectiveness of the
tighter row spacing, and because of the higher population in the
NH. Biomass was  17% higher for GP than FP for the 3-year study
(Table 3). In 2009, when FP grain yields outperformed GP, the
biomass yield of GP was statistically higher than FP (Table 3). This
indicates that the harvest index of GP was reduced in 2009 in both
planting configurations (data not shown). Year 2009 had a wetter
than average growing season, but most of the increased precipi-
tation came in May  and June, while July received only 48% of the
56 mm average for the location. We hypothesize that the GP har-
vest index is more sensitive to mid  to late summer drought than
the FP because of it’s longer growing season.

3.4. Grain and plant nitrogen

Grain N, on a per ha basis, was  affected by planting configuration
and year, but not by species (Table 2). These large differences in
grain N per ha (95% higher in the NH over the WL)  are explained
by the grain yield differences between row treatments (Table 3).
Likewise, the grain N per ha was  also largest in 2009 relative to the
previous two  years, mainly due to the overall greater yields in both
pea species favored by the high rainfall (Table 3).

The amount of plant N per ha (which includes shoot plus leaves
and grain pod shells) was affected not only by row treatment and
year, but also by pea species (Table 2). The GP averaged 57% higher
plant N per hectare compared to FP, and this difference was  pro-
nounced in 2007 and 2009 (Table 3). The average increase in plant N
due to the GP was  16 kg ha−1 for the 3-year study. The plant residue
N left by the peas may  have important implications for sustainable
agriculture, because mineralization can supply N to the following
crop (Heal et al., 1997). However, we observed that the above-
ground pea biomass is prone to blowing away during the windy
winters of the High Plains, so future research should investigate
ways to keep the residue in place such as planting mixtures of peas
with grassy crops. The planting configuration effect on plant N per
ha was  mainly due to the 67% increase in the biomass produced by
the NH relative to the WL  planting configuration (Table 3). As with
the grain N per ha, 2009 produced the most plant N per ha relative
to the other two years (Table 4).

The ANOVA indicates that there are pea species and year effects
on the grain N percent, but planting configuration had no effect
(Table 2). The GP had a 15% higher grain N concentration relative
to FP in the 3-year study, averaged across both planting configura-
tions (Table 5). The grain N percent was  highest in 2008, the most
water-limited year. Seed sink capacity can be negatively affected
during drought, resulting in decreased accumulation of starch and
oil. As drought stress increases, protein concentration increases
in legumes such as soybean (Glycine max L. Merrill) (Dornbos and
Mullen, 1992). Field observations showed that GP  had more nodu-
lation in the roots than the FP, although the difference was not
quantified. This leads us to hypothesize that the greater N concen-
tration in GP occurred because the GP fixed more N than the FP.
Others have found that GP seed is particularly high in protein and
lysine (Castell et al., 1994). Plant N percent, however, did not have
year or row effects (Table 2), indicating that residue quality for the
legume is not as affected as grain quality during low precipitation.
The pea species effect was due to the overall 15% higher percent N
content in GP plants relative to FP, which had differences in 2007
and 2009 (Table 5).

Grain C/N ratio had a year main effect according to the ANOVA
(Table 2), but was  not different between planting configurations
or pea species. The grain C/N was highest in 2009 (Table 4),
suggesting that grain C/N ratio increases when moisture condi-
tions are conducive to higher yields. This is possibly due to a N
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Table  1
Soil water content (surface to 1 m depth), and rainfall during the grasspea (GP) and field pea (FP) growing seasons. Precipitation was  measured at the Central Great Plains
Research Station in Akron, Colorado. Each soil water value is the average, n = 4. The planting configurations are 76 cm rows with 75 kg seeds planted per ha (WL), and 19 cm
rows  with 136 kg seeds planted per ha (NH).

Planting configuration Beginning soil water (mm) Ending soil water (mm)  Difference (mm) Growth season rain† (mm)

2007
GP NH 358 236 122 99
FP  NH 379 304 75 95
GP  WL 357 245 112 99
FP  WL 323 252 71 95

2008
GP NH 245 175 70 129
FP NH 255 194 61 103
GP  WL 269 189 80 129
FP  WL 260 207 53 103

2009
GP NH 337 282 55 250
FP  NH 319 255 64 208
GP WL  319 296 23 250
FP  WL 365 315 50 208

† Because the GP has a longer season, slightly more rainfall accumulated with the GP than the FP.

Table  2
Analysis of variance results for the yield and nitrogen variables. Plant values consist of the stems + leaves + pod weight at harvest. pc = planting configuration, sp = species,
yr  = year.

Grain yield
kg ha−1

Biomass at
harvest
kg ha−1

Grain N kg ha−1 Plant N kg ha−1 Grain N % by weight Plant N % by weight Grain C/N ratio Plant C/N ratio

Pea species NS * NS *** *** * NS ***

Planting configuration *** *** *** *** NS NS NS NS
Year *** *** *** *** *** NS *** *

Interactions sp. × yr,
3-way

pc × yr sp. × yr sp. × yr None sp. × yr None sp. × yr

* P < 0.05.
*** P < 0.001.

Table 3
Biomass, grain yield, and N content of grasspea (GP) and field pea (FP). The Duncan’s Multiple Range Test critical range (P < 0.05) between pea species and between row
treatments is shown. The planting configurations are 76 cm rows with 75 kg seeds planted per ha (WL), and 19 cm rows with 136 kg seeds planted per ha (NH).

Planting configuration row spacing (cm) Grain yield (kg ha−1) Biomass yield (kg ha−1) Grain N (kg ha−1) Plant N (kg ha−1)

2007
GP NH 1722 4554 79.9 40.4
FP NH  1899 4570 73.9 27.0
GP  WL  985 2603 46.9 22.6
FP  WL  1049 2462 40.1 12.4

2008
GP  NH 1994 4315 93.3 26.9
FP  NH 1065 2947 46.1 26.0
GP  WL  738 1774 37.5 13.5
FP  WL  716 1813 31.6 16.8

2009
GP  NH 2075 7650 90.2 77.6
FP  NH 2957 6838 106.9 40.9
GP  WL  1245 4600 47.9 52.4
FP  WL  1277 3189 47.6 25.6

Critical range between species or row treatments 249 503 10.3 7.0

Table 4
Grain and plant tissue N percent, C/N ratio at harvest and water use efficiency averaged across two planting configurations, two pea species, and three years. Plant values
consist  of the summed mass from the stems + leaves + pods at harvest. Numbers not sharing a superscript within a column are significantly different according to The Duncan’s
Multiple Range Test (P < 0.05).

Grain (kg ha−1) Biomass (kg ha−1) Grain N (kg ha−1) Plant N (kg ha−1) Grain % N Plant %N Grain C/N Plant C/N Grain WUE†

(kg ha−1 mm−1)
Biomass WUE†

(kg ha−1 mm−1)

2007 1414b 3548b 60.2b 25.6b 4.3b 1.2a 9.8b 39.1a 7.6a 18.8ab

2008 1128b 2712c 52.1b 20.8b 4.6a 1.3a 9.2b 32.9b 6.9a 15.6b

2009 1889a 5569a 73.1a 49.2a 3.9c 1.3a 11.6a 34.0ab 6.4a 20.1a

† Water use efficiency.
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Fig. 1. Biomass yield vs. water use for the 3-year study. Field peas are black triangles, and grasspeas are white circles. The solid line is the best fit for the field pea data, and
the  dashed line is the best fit for the grasspea data. Water use was calculated as starting soil water minus ending soil water, plus growing season precipitation. The planting
configurations are 76 cm rows with 75 kg seeds planted per ha, and 19 cm rows with 136 kg seeds planted per ha.

dilution effect from increased production of seed in wetter years.
Plant C/N was different between species, and there was also a year
effect (Table 2). Contrary to the grain C/N, the plant C/N ratio was
not highest in 2009, but in 2007. This may  be explained by the
lack of a year effect on plant N percent. The plant C/N ratios in this
study ranged from 28 to 50 (Table 5). The FP plant C/N ratio for
the experiment averaged 39, compared to 32 for GP, and this dif-
ference was statistically significant. The higher residue quality of
GP could lead to more mineralization and rapid N supply to subse-
quent crops (Heal et al., 1997). The potentially available N from crop

Table 5
Grain and plant tissue N percent and C/N ratio at harvest between two pea species
and  two planting configurations. Grasspeas are (GP) and field peas are (FP). Plant
values consist of the stems + leaves + pods. The Duncan’s Multiple Range Test critical
range (P < 0.05) between pea species and between row treatments is shown. Plant
N  refers to the shoot, leaves, and grain pod shells. The planting configurations are
76  cm rows with 75 kg seeds planted per ha (WL), and 19 cm rows with 136 kg seeds
planted per ha (NH).

Planting configuration (cm) Grain N % Grain C/N Plant N % Plant C/N

2007
GP NH 4.7 8.9 1.4 31.0
FP  NH 3.9 10.7 1.0 44.7
GP  WL  4.8 8.6 1.4 30.9
FP  WL  3.8 10.8 0.9 49.7

2008
GP  NH 4.7 9.1 1.2 38.4
FP  NH 4.4 9.7 1.4 32.2
GP WL  5.1 8.4 1.3 32.5
FP  WL  4.4 9.6 1.5 28.6

2009
GP  NH 4.4 9.8 1.4 32.0
FP  NH 3.6 11.7 1.1 41.8
GP WL  3.8 13.8 1.6 28.4
FP  WL  3.8 11.2 1.3 33.9

Critical range between species or rows0.2 1.3 0.2 4.3

residues can reach nearly 60% of a cover crop total N, and depends
on the C/N of the material (Vigil and Kissel, 1991). Incubation stud-
ies have tried to quantify the critical C/N ratio of crop residues,
i.e. the C/N ratio where net N immobilization ends and N miner-
alization begins. While the critical C/N ratios can be affected by
incubation conditions, the critical value can reach 40 for long-term
incubations (Vigil and Kissel, 1991). In this study, we show that
the C/N ratio of FP can surpass 40, where mineralization potential
is minimal (Table 5). This was  not true of the GP, indicating that
GP has the capacity to retain a favorable C/N ratio for supplying N
to a subsequent crop across different season precipitation regimes.
Note, however, that mineral N (ammonium plus nitrate) measured
in the fallow period after the 2007 season averaged 12 mg kg−1 for
FP plots, while GP plots had an average of 17 mg  kg−1. A second
pre-plant sampling before the 2008 growing season showed that
soil mineral N increased by less than 6 mg  kg−1 during the fallow
period, and while the net mineralization was overall small, it was
larger on FP plots (data not shown). This suggests that the N supply
to subsequent crops from these plots was minimized because much
of the plant N was removed with the grain at harvest. Also, much
of the above-ground pea residue was  blown clear of the plots by
winter winds. Because of this, we hypothesize that any pea N that
may  have accumulated due to mineralization in these plots would
have come mostly from pea roots and soil organic matter.

3.5. Water use efficiency

There is a planting configuration effect (P < 0.0001) for both the
grain WUE  and biomass WUE. When averaged across species, the
NH configuration had 89% and 81% greater grain WUE  and biomass
WUE  than the WL configuration respectively (Table 6). Pea species
had only a marginally significant effect on grain WUE  (P < 0.10),
and no statistical effect on the biomass WUE.  However, both GP
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Table  6
Water use efficiency (WUE) of the field peas and grasspeas, averaged across three years. The planting configurations are 76 cm rows with 75 kg seeds planted per ha (WL),
and  19 cm rows with 136 kg seeds planted per ha (NH).

Row (cm) Grain WUE† (kg ha−1 mm−1) Biomass WUE†† (kg ha−1 mm−1)

Field pea (FP) NH 9.8 24.0
WL 5.3 13.1
Average 7.5 18.6

Grasspea (GP) NH 8.3 22.8
WL  4.3 12.8
Average 6.3 17.8

GP  and FP, NH average 9.1 23.4
GP  and FP, WL  average 4.8 13.0

† The Duncan’s Multiple Range Test critical range (P < 0.05) is 1.3 kg ha−1 mm−1.
†† The Duncan’s Multiple Range Test critical range (P < 0.05) is 3.1 kg ha−1 mm−1.

and FP WUE  should be considered relatively high. In a 6-year study
in Canada, Biederbeck and Bouman (1994) found GP and feed pea
to have high vegetative WUE  (18 and 19 kg ha−1 mm−1 respec-
tively) compared to lentil, flatpea, vetch, and wheat. The GP had
marginally less grain WUE  than FP (Table 6), due to a longer sea-
son that resulted in higher precipitation values used for the WUE
calculations. There was a marginally significant effect of year on
biomass WUE  (P < 0.10), but not on grain WUE. Biomass WUE,
averaged across planting configurations and species, was  highest
(20 kg ha−1 mm−1) in 2009, the wettest year, and lowest in 2008
(16 kg ha−1 mm−1). The WUE  can be affected by the timing and
amount of precipitation because of the dynamics of vegetative and
reproductive development in legumes. For example, water stress
during early vegetative growth results in short plants with reduced
leaf area, which may  then limit water extraction during repro-
ductive growth (Nielsen and Nelson, 1998). More important is the
water stress effect during reproductive development because it can
curtail grain yield. Fig. 1 shows that the relationship between yield
and water use is generally better for the biomass than for the grain.
This is mostly due to variations in the harvest index across years.
The relationship between biomass yield and water use shows that
GP tends to perform similar to FP in NH configuration across a
wide range of water usage (Fig. 1). However, on the WL  configu-
ration, FP has a higher corresponding yield than GP at the lower
water usage values, which can be explained by the shorter sea-
son and the correspondingly less precipitation used for the water
use calculations. Climate change models of the Central Great Plains
Region predict increasing temperatures, higher evaporation rates,
and more drought events (US Global Change Research Program). If
these scenarios are realized, plants such as GP that can give rea-
sonable yields during drought years, can become a good option for
dryland farmers.

3.6. Growth

The GP and FP had marked differences in the timing of biomass
accumulation, with biomass production occurring at a slower rate
in GP (Fig. 2). Phenological development measurements taken in
2007 showed that FP reached the senescence at the same time that
GP was still undergoing seed development with some pods still not
reaching full length (data not shown). This meant that GP stayed
in the field for approximately 15 d after FP harvest. The quantity
and distribution of summer precipitation can vary between years
in the Central Great Plains, which can result in stress during differ-
ent developmental stages of a cool season crop. A terminal drought
occurs when the legume lacks sufficient moisture during flowering
and grain filling or when plants are seeded at the start of a droughty
season (Frahm et al., 2004). The FP may  be advantageous in a sit-
uation where the cool season legume is going to be followed by a
winter crop, because it gives more time for soil water recharge,
but this would only work when there is ample late summer
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Fig. 2. Pea biomass measurements during the 2007 growth season. Admiral pea
19-cm rows 136 kg seeds planted per ha (�), admiral pea 76-cm rows with 75 kg
seeds planted per ha (�), grasspea 19-cm rows 136 kg seeds planted per ha (×), and
grasspea 76-cm rows with 75 kg seeds planted per ha (�). The values are averages,
n  = 4.

precipitation. In addition, FP could be cut for forage at an earlier date
than GP, for an equivalent amount of biomass (Fig. 2). Lyon et al.
(1995) state that short-season summer crops use the initial stored
soil water more effectively than long-season summer crops. Shorter
season crops have more water available at grain-filling compared
to long season crops, which use the initial soil water for vegetative
growth instead of grain production. Water stress during flower-
ing can negatively affect the number of pods, seeds per pod, seed
yield, and seed weight (Singh, 1995; Nielsen and Nelson, 1998). This
would imply that on years with good stored soil water but sparse
summer rains, FP may be more competitive than GP. This, how-
ever, was  not shown in 2007, a year with relatively high stored soil
water and low summer rains, where FP and GP grain yields were
statistically equal (Table 1).

4. Conclusions

Our research clearly shows that GP is a legume species well
adapted to the climate of the Central High Plains, with comparable
yields but longer season than the more common FP. Season length
can be an important trait of adaptation in cool season legumes
because early flowering can help avoid a late summer drought and
the resulting lower grain filling (Siddique et al., 2001). The GP has
somewhat lower grain WUE  and leaves less precipitation recharge
time for a subsequent winter crop compared to FP, which are impor-
tant considerations for Central Great Plains dryland systems. The
GP dried the soil more than FP during the growing season during
the two driest years of the experiment. Grasspea had more biomass
accumulation and N accumulation in the biomass and grain than FP,
indicating better N2-fixing capacity. The lower C/N ratio and higher
N2 fixation in GP can make it a more desirable choice as a cover
crop than FP. Our results show that the 76-cm row spacing recom-
mended by GP seed suppliers leads to lower yields and biomass
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production in our geographic area. We  have demonstrated that the
NH planting configuration is more productive and suitable. One of
the challenges of growing peas in the Central Great Plains region
is weed control. We  observed that regardless of planting configu-
ration, tumbleweeds (Kochia scorparia, Salsola iberica)  can become
a problem in the late season unless good herbicide management is
in place.
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