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Abstract. We compute tomographies of 2D fast-ion velocity distribution functions

from synthetic collective Thomson scattering (CTS) and fast-ion Dα (FIDA) 1D

measurements using a new reconstruction prescription. Contradicting conventional

wisdom we demonstrate that one single 1D CTS or FIDA view suffices to compute

accurate tomographies of arbitrary 2D functions under idealized conditions. Under

simulated experimental conditions, single-view tomographies do not resemble the

original fast-ion velocity distribution functions but nevertheless show their coarsest

features. For CTS or FIDA systems with many simultaneous views on the same

measurement volume, the resemblance improves with the number of available views,

even if the resolution in each view is varied inversely proportional to the number of

views, so that the total number of measurements in all views is the same. With a

realistic four-view system, tomographies of a beam ion velocity distribution function

at ASDEX Upgrade reproduce the general shape of the function and the location of

the maxima at full and half injection energy of the beam ions. By applying our method

to real many-view CTS or FIDA measurements, one could determine tomographies of

2D fast-ion velocity distribution functions experimentally.

PACS numbers: 52.25.Os, 52.40.Db, 52.50.Gj, 52.65.Cc, 52.70.Gw
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1. Introduction

Fast ions play a key role in high performance plasmas: they mediate energy from

external heating sources or fusion reactions to the bulk plasma and so maintain the high

temperatures typical for fusion-relevant plasmas. The fast-ion orbits can be perturbed

by fluctuations in the plasma, and the ions can then prematurely be ejected from the

plasma, leading to undesired local heating of the first wall instead of plasma heating.

Several types of modes selectively deplete or reorganize fast ions in particular velocity-

space regions, for example sawteeth [1–3], Alfvén eigenmodes [4–6] and neoclassical

tearing modes [7]. Turbulence also ejects ions selectively depending on their energy [8,9].

It is in particular this selectivity of fast-ion depletion or reorganization in velocity

space that can be quantified with velocity-space tomography. Additionally, velocity-

space tomography could be used to monitor phase-space engineering of fast-ion velocity

distribution functions which has enabled control of sawteeth and neoclassical tearing

modes [10]. We show velocity-space tomographies using parameters typical for the

ASDEX Upgrade collective Thomson scattering (CTS) [11–15] and fast-ion Dα (FIDA)

diagnostics [16].

CTS and FIDA diagnostics are sensitive to 1D functions g of local fast-ion velocity

distribution functions f in magnetically confined plasmas. The spatial resolution of the

CTS diagnostic at ASDEX Upgrade is about 10 cm, and the measurement location can

be moved freely in the plasma core by means of steerable antennas. The time resolution

has often been set to 4 ms. CTS diagnostics are sensitive to the 1D projection of f

onto the wave vector kδ = ks − ki which is the difference between the wave vectors of

scattered radiation ks and incident radiation ki. The most important angle to describe

the pre-selected projection direction given by kδ is the projection angle φCTS = ∠(kδ,B)

where B is the magnetic field. In CTS experiments the ions leave spectral signatures in

the scattered radiation. A frequency shift νδ of scattered radiation can be related to an

ion velocity v projected onto kδ:

νδ = νs − νi ≈ v · kδ/2π = ukδ/2π (1)

where u is the projected velocity and kδ = |kδ|. We define here a CTS measurement as

detection of the fast ion phase-space density in a particular interval in u that is related

to an interval in νδ via equation 1. We define a view as a set of measurements taken in

a projection direction described by φCTS. A second CTS receiver has been installed at

ASDEX Upgrade in 2012, so that two simultaneous views with independently variable

projection angles φCTS are availabe.

The location of a FIDA measurement is determined by the intersection of the

injected neutral beam (NBI) beam and the line-of-sight (LOS) of the optical head.

The spatial resolution of the FIDA diagnostic at ASDEX Upgrade is about 7 cm, and

the time resolution is 2 ms. Beam source S3 is observed in the plasma core at two

different fixed angles φFIDA = ∠(kLOS,B) where kLOS represents the wave vector along

the LOS of the optical heads. The toroidal LOS has an angle of φFIDA = 11◦, and the

new poloidal LOS has φFIDA = 64◦. The angles φCTS and φFIDA are analogue and will
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hereafter simply be called φ. FIDA diagnostics are also sensitive to 1D functions of f as

the fast ions likewise leave a spectral signature in the detected light by Doppler shift and

Stark splitting. For FIDA diagnostics no simple relation between the projected velocity

u and the wavelength λ exists, so we define here as FIDA measurement the detection

of Doppler- and Stark shifted light in a particular wavelength interval.

Computed tomography in real space is used in many applications, for example in

medical imaging in x-ray computed axial tomography (CAT or CT) scanners, positron

emsission tomography (PET) scanners or magnetic resonance imaging (MRI) scanners

[17, 18]. It is also widely used in nuclear fusion research [19, 20]. We give a new

prescription for tomographic reconstruction in velocity space that is analogue to those

in real space. The prescription is based on CTS or FIDA weight functions [21–23] which

were not available in previous work [24]. In reference [24] reconstructions from two and

three synthetic CTS views have been shown to contain salient features of the underlying

2D fast-ion velocity distribution functions in idealized situations. It has since become

conventional wisdom that a 2D velocity distribution function could not be found from

one single 1D CTS or FIDA view and that at least two CTS or FIDA views with different

projection directions would be necessary for that [12, 22–32]. We demonstrate that in

fact just one single 1D CTS or FIDA view theoretically suffices to compute tomographies

of almost the entire discrete 2D velocity distribution function under idealized conditions.

Nevertheless, in simulated tokamak experiments with many CTS or FIDA views, the

resemblance of tomographies and the original functions improves with the number of

available views. Several tokamaks have been equipped with multiple FIDA views, for

example DIII-D [33], NSTX [34], MAST or ASDEX Upgrade which is now also equipped

with two CTS receivers. With our prescription we can compute tomographies for any

set of fast-ion measurements, in particular those obtained with CTS or FIDA or other

fast-ion charge exchange spectroscopy (FICXS) that detects other light than Dα. A mix

of diagnostics would also be possible as will be relevant to the CTS/FIDA system at

ASDEX Upgrade, the CTS/FICXS system at LHD [35, 36] and the proposed two-view

CTS system for ITER [37–40], in particular if it can be combined with FICXS [32].

However, only one of the two CTS views is an enabled ITER diagnostic. One could also

include neutral particle analyzers (NPA) or other fast-ion diagnostics in such mixes. We

will study tomographies from such diagnostic mixes eleswhere.

In section 2 we will argue that one single 1D set of CTS measurements at

different frequencies in fact theoretically suffices to reconstruct the original 2D velocity

distribution function under ideal conditions. As weight functions form the core of our

tomographic reconstruction prescription to be presented in section 4, we briefly review

their meaning and use in section 3. Tomographic reconstructions of a variety of functions

from synthetic CTS measurements under idealized conditions are demonstrated in

section 5 and under simulated experimental conditions in section 6. In section 7 we

show that tomographies can likewise be computed from synthetic FIDA measurements.

Finally, we discuss the analogy of velocity-space tomography to real-space tomography

in section 8 and draw conclusions in section 9.
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2. Velocity-space tomography gedankenexperiment

First we perform a gedankenexperiment to motivate how one single 1D projection can

in fact contain enough information to reconstruct the underlying 2D velocity-space

distribution function in discrete problems. Suppose that Alice has a way to construct a

2D velocity-space distribution function f ion by ion and that Bob has a way to measure

the 1D velocity distribution function g by CTS every time a new ion has been added.

Bob will only know his own measurements obtained in a single CTS view. Alice adds

an ion at some coordinate pair (v‖, v⊥) of her choice, for example at the location chosen

in figure 1a. Bob then measures g which would have the characteristic hammock shape

shown in figure 1b [23, 41]. Bob can now work out the (v‖, v⊥)-coordinates using

u = v‖ cosφ+ v⊥ sinφ cos γ (2)

where γ is the gyrophase of the ion [23]. Since cos γ takes values from -1 to 1, the width

of the interval in which Bob detects the ion is 2v⊥ sin φ. The center of the interval

is v‖ cos φ. Knowing his projection angle φ and the width and center of his measured

function g, he can tell at which coordinates (v‖, v⊥) Alice has added the ion. Alice then

adds a second ion at a velocity-space location of her choice, and Bob again measures g

by CTS. Now the function g looks more complicated but Bob can subtract his previous

function g and has again a simple hammock-shaped function from which he can deduce

the location of the second ion. This procedure can be repeated until the entire 2D

velocity distribution function is constructed ion by ion, and Bob will know the entire

function exactly, looking just at his 1D measurements. Alice could also construct f by

adding collections of ions with identical velocities instead of single ions. Bob could then

tell how many ions have been added since the integral over u is proportional to the

number of ions:

n =

∫
gdu =

∫ ∫
fdv‖dv⊥. (3)

This gedankenexperiment shows that one single 1D CTS view can in fact contain

enough information for accurate reconstruction firstly in simple situations and secondly

also in arbitrarily complicated situations if the complexity is added step by step. In real

experiments only the complicated situation can be generated, and it is not immediately

obvious that the 1D function g can contain enough information about the 2D function f .

But we will demonstrate that we can compute accurate tomographies from one single

CTS or FIDA view using our tomography reconstruction prescription if just enough

information is available.

3. Discrete weight functions for CTS and FIDA

Discrete weight functions will lead to the tomographic reconstruction prescription

presented in section 4. The reconstruction prescription in reference [24] did not

use weight functions and was made tractable by expansion of the 1D (synthetic)

measurements as well as the 2D fast-ion velocity distribution functions into orthonormal
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Figure 1. a) Example function f consisting of a single pixel in arbitrary units. b)

Projection g of the pixel function for a projection angle of φ = 70◦.

sets of base functions. Bessel functions have been used but other choices would be

possible [24]. Exploiting CTS or FIDA weight functions [21–23], we will give a simpler

reconstruction prescription that is inherently tractable and obviates the use of such

expansions. Weight functions have previously been used in an alternative reconstruction

prescription where the tomography was found by iteration. This has the disadvantage

that the solution depends on the arbitrary start conditions of the iteration [23]. The

new prescription we present gives unique solutions. In this section we define weight

functions in discrete form.

Assuming f to be rotationally symmetric about the v‖-axis, weight functions

describe the mapping from 2D velocity-space distribution functions f to 1D functions

g that are measured with CTS [23] or FIDA [22]. We here treat a discrete tomography

problem and so also deal with discrete functions. The coordinates (u, φ, v‖, v⊥)

are discretized in (ui, φj, v‖k, v⊥l) where the subscripts i, j, k, l run from 1 to the

corresponding upper case letter I, J,K, L. I is the number of measurements at different

ui in a CTS or FIDA view, J is the number of available views, and (K,L) are the

number of grid points in (v‖, v⊥), respectively. gij = g(ui, φj) is a matrix of discrete 1D

functions in ui for each viewing angle φj. fkl = f(v‖k, v⊥l) is the discrete 2D velocity-

space distribution function. gij and fkl are related by discrete CTS or FIDA weight

functions wijkl analogue to the continuous weight functions [23] so that

gij =
K∑
k=1

L∑
l=1

wijklfkl∆v⊥∆v‖. (4)

Weight functions pick out and assign weights to the velocity-space interrogation region

that is observed for a particular projection angle φj and a projected velocity range

at ui (observed in a frequency range at fi) for CTS or a wavelength range at λi for

FIDA. In (v‖, v⊥)-coordinates CTS weight functions have a nearly triangular shape as

shown in figure 2 for ui = 2 × 106 m/s and four typical projection angles φj. Weight

functions describing CTS measurements quantify the probability that a gyrating ion

with velocity (v‖, v⊥) is observed in a particular projected velocity range at ui for a given

projection angle φj. The scattering must always originate from the coloured triangular
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region. A comprehensive discussion of weight functions for fast-ion CTS measurements

is given elsewhere [23]. The weight functions describing FIDA measurements are more

complicated and account for the charge exchange probability, the probability of photon

emission from atomic level n = 3 to n = 2, Doppler shift of radiation originating from a

gyrating particle, Stark splitting of the deuterium Balmer alpha line, and the instrument

function of the FIDA spectrometer [16, 21, 22, 26, 29]. The Doppler shift part of FIDA

weight functions is analogous to the CTS weight functions [23].
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Figure 2. Gyromotion weight functions w for u = 2× 106 m/s and various projection

angles φ. The colorbar shows the base 10 logarithm.

4. Tomographic reconstruction prescription

To find tomographies from CTS or FIDA measurements, we rewrite equation 4 to

formulate a linear algebra problem of the form

WmnFn = Gm. (5)

The matrix elements Gm, Fn and Wmn are respectively obtained from the matrix

elements gij, fkl and wijkl by

Gm = gij (6)

Fn = fkl (7)

Wmn = wijkl (8)

using the assignment rules

m = (i− 1)× J + j (9)

n = (k − 1)× L+ l. (10)
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F is a column matrix of size N × 1 obtained from the discrete 2D fast-ion velocity

distribution function described by N = K × L points. G is a column matrix of size

M ×1 obtained from the discrete 1D functions measured with CTS or FIDA. If J views

are available and I measurements in ui (CTS) or λi (FIDA) are taken in each view,

then the total number of measurements is M = I × J . W is then a transfer matrix

of size M × N taking F into G. The prescription given here corresponds to stacking

lines or rows on top of each other but the order of this reorganization of the matrices is

arbitrary as long as we obey equation 4. The forward problem to determine g from f or

equivalently G from F is straightforward given that w and consequently W are known.

An example of the action of the transfer matrix W on a pixel function F is illustrated

in figure 1. The projection angle φj of this single-view example (J = 1) is set to 70◦,

and we compute a weight function for each ui to obtain the value of G from the inner

product WF . The 1D function G for a pixel function has the characteristic hammock

shape shown in figure 1. The inverse problem to determine f from g or equivalently F

from G is more complicated: we have to find an optimum solution F+ to the under- or

overdetermined system of linear equations (equation 5) where W and G are known. We

then also know f+ because we know F+ and the reorganization procedure.

We find an optimum solution toWF = G for any size ofW from the Moore-Penrose

pseudoinverse or generalized inverse W+ under positivity constraint. W+ is a unique

N × M matrix [42–44]. It can be computed from the singular value decomposition

(SVD) of W : An M ×N matrix W can always be decomposed uniquely as

W = UΣV T (11)

where U is the normalized eigenvector matrix of WW T (an orthogonal M ×M matrix),

V is the normalized eigenvector matrix of W TW (an orthogonal N × N matrix), V T

denotes the transpose of V , and Σ is a diagonal (but rectangular) M ×N matrix [44].

The diagonal entries σ1, σ2, ..., σR are the singular values of W , and R is the rank of W .

The other entries of Σ are zero. The Moore-Penrose pseudoinverse is then

W+ = V Σ+UT (12)

Σ+ is a diagonal (but also rectangular) N × M matrix, and the diagonal entries are

1/σ1, 1/σ2, ..., 1/σR, i.e. the reciprocals of corresponding entries of Σ. The other entries

of Σ+ are zero. The computed tomography is then

F+ = W+G. (13)

This is the equation from which we could determine F+ from actual measurements. IfW

is invertible, then W+ is identical to the inverse W−1. But W is generally a rectangular

M × N matrix that cannot be inverted. If the system WF = G is overdetermined,

F+ gives the minimum 2-norm of the residual |WF − G|2. If the system WF = G

is underdetermined, F+ is the particular solution with minimum 2-norm |F |2 out of

infinitely many solutions (the one with no nullspace component).
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5. Tomographies under ideal conditions

In this section we firstly demonstrate that our prescription for computed tomography

in velocity space can reproduce a variety of functions – any function we tested – in an

idealized situation. Secondly, we also demonstrate that just one single synthetic CTS or

FIDA view on that function suffices to construct an accurate tomography. We assume

that the function can be described accurately on a numerical 2D grid, i.e. the grid size

is so fine that even features on the smallest scale are accurately described. We also

assume that there is no noise. The effects of insufficient resolution and noise will be

discussed in section 6. Under these idealized conditions, we set the numerical grid of

the tomography equal to that of the original function. As will be shown in section 6,

these assumptions will not give a realistic picture of the recoverable information in

real experiments. Nevertheless, previous work used identical grids for tomography

and original [23, 24], and the results found in this section give an upper limit of the

quality that can be achieved and demonstrate that one single view is enough under

ideal conditions. Our prescription immediately suggests that the tomography should

be very accurate in this case if just M > N (more measurements than pixels). If the

numerical grids of the original function and the tomography are equal, we can give a

simple relation between F and F+. One can substitute for G and use the orthogonality

of U .

F+ = W+G = W+WF = V Σ+UTUΣV TF = V Σ+ΣV TF (14)

Σ+Σ has as R ones on the diagonal and otherwise zeros. Therefore only the first R

columns and rows of V and V T will be used in the reconstruction. In that sense the

reconstruction for identical numerical grids is analogue to lossy data compression using

SVD [44].
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Figure 3. The original checkerboard function shown here is digitized in N =

30× 61 pixels. Typical 1D projections are shown in figure 4. Tomographies are shown

in figure 5.

Under these assumptions, we reconstruct a checkerboard function (figure 3) and

a pacman function (figure 6) using just one single view. We choose these test

functions because it is easy to spot differences between the original function and the
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Figure 4. Projections of the checkerboard function (figure 3) for φ = 30◦ with M =

101, 501 and 2501 measurements in one view g. a) Zoomed out showing the entire

functions g. b) Zoomed in showing that fine-scale structure can be resolved with

M = 2501 measurements which is sufficient to compute an accurate tomography.
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Figure 5. Single-view tomographies of a checkerboard function in N = 30×61 = 1830

pixels given only M measurements at φ = 30◦. The M measurements are evenly

spaced in −5 × 106m/s < u < 5 × 106m/s. The number of measurements is varied

from M = 101 to M = 2501. The axes and colorbars are identical to those for the

original in figure 3.
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Figure 6. The original pacman function shown here is digitized in N = 30 × 61 =

1830 pixels. Tomographies are shown in Fig. 7.
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Figure 7. Single-view tomographies of a pacman function in 1830 pixels given

only M measurements at φ = 30◦. The M measurements are evenly spaced in

−5 × 106 m/s < u < −0.7 × 106 m/s and 0.7 × 106 m/s < u < 5 × 106 m/s. The

number of measurements is varied from M = 88 to M = 2868. The axes and colorbars

are identical to those in figure 6.

tomography. The checkerboard pattern in figure 3 covers the velocity-space region for

−3.5 × 106m/s < v‖ < 3.5 × 106m/s and 0 < v⊥ < 3.5 × 106 m/s and is digitized

in N = 30 × 61 = 1830 pixels. This resolution is typical for simulated fast-ion

velocity distribution functions today. We distribute M measurements evenly in the

interval −5 × 106 m/s < u < 5 × 106 m/s to ensure complete coverage of the velocity-

space region we show here for any φ. Synthetic measurements in one single view for

φ = 30◦ and M = 101 to M = 2501 are illustrated in figure 4 . By increasing the

resolution one can capture increasingly more fine-grained structure of g that contains

recoverable information about the 2D function f . We stress that the noisy looking curve

(M = 2501) is the accurate one whereas the smooth looking curve (M = 101) contains

least information. Actually the smooth curve has a large noise level originating from the

discretization. The resolution in the u coordinate for M = 101 corresponds roughly to

the resolution of most of the channels of the ASDEX Upgrade CTS receivers. Over 2500

measurements in one view seem possible in high frequency resolution measurements that

were demonstrated at TEXTOR [45–47].

Single-view tomographies computed from M synthetic measurements such as those

in figure 4 are presented in figure 5. For any resolution they contain fine-grained

structure that is similar to that in the original in figure 3. Even for M ∼ N/20

(M = 101), the tomography contains evenly distributed small-scale structures but

their sizes are too large by a factor two. The checkerboard pattern at correct scale

begins to emerge when M ∼ N/2 (M = 1001). For M ∼ N the tomography closely

resembles the original with minor defects, and for M ∼ 4N/3 they are indistinguishable.

The reconstruction prescription in previous work [24] failed to reconstruct the original

function for low v⊥ corresponding to about v⊥ < 106 m/s in our graphs. The

checkerboard patterns in figure 5 demonstrate that our prescription works for all v⊥
about evenly.
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Figure 7 shows single-view tomographies of the pacman function (figure 6), which

we consider to be quite complex, for various number of measurements M . From here

on we do not use measurements in the interval −0.7 × 106 < u < 0.7 × 106 m/s. CTS

due to bulk ions makes unambigous detection of fast ions very difficult if not impossible

in this interval, and so we block it in the synthetic diagnostic. This loss of information

results in the appearance of triangular regions that are not experimentally accessible

(figure 7a-d). The shape of such triangles depends on the projection angle φ. The sides

of these triangles are given by v⊥ = (const× vth ± v‖ cosφ)/ sinφ and v⊥ = 0 [23]. The

original pacman function contains complicated structures with a scale separation of one

order of magnitude between the large-scale structures (pacman head, spook) and the

small-scale fine details (eyes and mouth, zick zack pattern of the spook fringe). The

tomography of the pacman function is also an accurate reproduction of the original

function if M is large enough. The required number of measurements M for accurate

tomographies is similar to the required M for the checkerboard – and in fact for any

function we tested – and does not significantly depend on whether an interval in u has

been blocked.

Lastly, we note that the projection angle φ is not very important in the idealized

situation except for at φ = 90◦ when all information about v‖ is lost and at φ = 0◦ where

the weight functions are singular. No advantage is gained from having many views

for equal total number of measurements M in the idealized situation. For example

a tomography from 2 views with each 1000 measurements (M = 2 × 1000 = 2000)

roughly resembles the original as much as a tomography from 1 view with M = 2000

measurements. Likewise, the angles are not important for many-view systems either if

just the resolution of the measurements is high enough. The quality of the tomography

for any number of views depends mostly on the total number of measurements M in

the idealized situation.
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Figure 8. Typical beam ion distribution function for beam S3 at ASDEX Upgrade

computed with TRANSP/NUBEAM. The distribution function is shown on a grid

with 350× 701 pixels.
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6. Tomographies for heavily under-diagnosed fast-ion distribution functions

The previous section demonstrated that our tomography prescription will work in an

idealized situation. The original function had the same number of grid points as the

reconstructions as in previous work [23, 24]. The 2D velocity distribution function in

an actual tokamak experiment will have fine-grained structure. It is then practically

impossible to make enough CTS or FIDA measurements to carry all information about

the fine-grained f . To simulate experimental conditions, we first construct a 1D

projection g with M synthetic measurements from a finely resolved 2D distribution:

G = W1F (15)

Here we discretize f in N1 = 350 × 701 ∼ 250000 grid points and take M ∼ 3400 or

M ∼ 340 measurements leaving f under-diagnosed by a factor on the order of 100 or

1000, respectively. Accurate tomographies are impossible for such under-diagnosed f .

Then we compute a tomography with a much lower number of grid points than N1:

N2 = 30× 61 = 1830 ≪ N1.

F+ = W+

2 G (16)

Substitution of G now gives

F+ = V2Σ
+

2 U
T
2 W1F (17)

Substitution of the SVD of W1 = U1Σ1V
T
1 does not lead to simplifications as in

equation 14 since UT
2 U1 does not disappear. If the grids for the tomography and the

original function are not identical, it is necessary to truncate the SVD and use only

singular values above a selected level. This is effectively also a lossy data compression

technique since we find a lower rank approximation of the transfer matrix W2 that has

about rank R ∼ 1700 in our example. Reference [24] used such a lossy data compression

technique to simulate the effects of noise, noting that noise decreases the information

content of the smallest singular values. The effect of noise and of under-diagnosing,

i.e. computing the tomography on a much coarser grid than the original, are similar.

G = W1F is different from G+ = W2F
+, and this difference can be interpreted as noise

originating from the discretization.

Figure 8 shows a typical beam ion velocity distribution function at ASDEX Upgrade

resolved on N1 = 350 × 701 grid points for which we present tomographies from CTS

measurements here. The original function has peaks at full and half injection energy of

60 keV in deuterium. We plot tomographies (N2 = 30 × 61 = 1830 grid points) of the

original function in figure 9 for various number of available views J and measurements

M . The three-view and four-view CTS tomographies are proxies for mixed CTS/FIDA

tomographies that can be reconstructed from the two available CTS views and the two

available FIDA views at ASDEX Upgrade. The combination of different diagnostics in

our method will be discussed elsewhere. We set the number of measurements per view

inversely proportional to the number of views so that the total number of measurements

M is almost the same in each column of figure 9. The left column shows tomographies



Velocity-space tomography of fast-ion distributions 13

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [1

0
6  m

/s
]

0

5

10

15

x 10
5

(a) 1 view

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [1

0
6  m

/s
]

0

5

10

15

x 10
5

(b) 1 view

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [1

0
6  m

/s
]

0

5

10

15

x 10
5

(c) 2 views

−3 −2 −1 0 1 2 3
0

1

2

3

v
||
 [106 m/s]

v ⊥
 [1

0
6  m

/s
]

0

5

10

15

x 10
5
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(f) 3 views
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(g) 4 views
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Figure 9. Tomographies (N2 = 30 × 61 pixels) of a typical beam ion distribution

function (N1 = 350× 701 pixels) for various numbers of views and measurements M .

The total number of measurements M is similar in each column. In the left column

(a,c,e,g) M ∼ 340 whereas in the right column (b,d,f,h) M ∼ 3400. The viewing angles

are φ = 20◦ for one view, φ = (10◦, 80◦) for two views, φ = (10◦, 40◦, 80◦) for three

views and φ = (10◦, 30◦, 60◦, 80◦) for four views.
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Figure 10. A drifting Maxwellian resolved in 350× 701 pixels.
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Figure 11. Tomographies in N2 = 30× 61 = 1830 pixels for the drifting Maxwellian

shown in figure 10 for M ∼ 2000 evenly distributed on the available views. The viewing

angles are φ = 20◦ for one view, φ = (30◦, 60◦) for two views, φ = (10◦, 40◦, 80◦) for

three views and φ = (10◦, 30◦, 60◦, 80◦) for four views.

for one to four views with about M ∼ 340 measurements in total (M < N), and the

right column with about M ∼ 3400 measurements in total (M > N). In the idealized

situation the number of views J is unimportant; only the number of measurements M

matters. Therefore just one view suffices for accurate tomographies in the idealized

situation. However, under simulated experimental conditions, the number of views J

is highly important for the relevance of the tomography to the original function. The

single-view tomographies do not resemble the original function but they resemble rather

the weight functions, and taking more measurements M in that one view does not

help significantly. Nevertheless, the lopsidedness towards negative velocities is correctly

reconstructed in the tomographies. For two views the region of the beam ions is roughly

identifiable, and two maxima emerge. The four-view tomographies resemble the original

function best. To quantify the difference between original and the tomography, we define
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an error measure as

Qtom =
1

nfast

∫ ∫
|f − f+|dv‖dv⊥ (18)

nfast =

∫ ∫
fdv‖dv⊥ (19)

which is a single number quantifying the resemblance of the tomography with the original

function. Qtom = 0 means that the match is perfect, and Qtom ∼ 1 means that f+ does

not resemble the original function f . In this example Qtom = 1 for 1 view, Qtom = 0.8

for 2 views, Qtom = 0.7 for 3 views and Qtom = 0.5 for 4 views, but the particular values

depend on the particular distribution function and the diagnostic setup. This measure

should be useful for future optimization studies. Comparing the low resolution column

(M < N) with the high resolution column (M > N), we find that taking ten times

more measurements per view does not help improving the tomographies much whereas

adding extra views does. For the high resolution cases with M ∼ 3400 only 340 singular

values are useful whereas about 300 are useful in the low resolution cases with M ∼ 340.

We now illustrate tomographies of a simpler function from synthetic CTS

measurements. Figure 11 shows tomographies of a drifting Maxwellian function with

N1 = 350 × 701 pixels (figure 10) that we then diagnose in one to four views, and

we seek tomographies with N2 = 30 × 61 = 1830 pixels. Even though the number of

measurements M ∼ 2000 is again almost the same for the four cases, the tomographies

improve with the number of views. One view is not enough to give tomographies that

resemble the original. Nevertheless, the tomography for just one single view correctly

identifies the location of the Maxwellian peak, so we can conclude that measurements in

one single view contain relevant information about f even under simulated experimental

conditions.

7. Tomographies from FIDA measurements

So far we have built the transfer matrix W from gyromotion weight functions, and

these are sufficient to describe CTS measurements. Analytic expressions for these CTS

weight functions are available [23]. Weight functions relevant to FIDA measurements

are more complicated and are calculated by counting photons in the different wavelength

intervals. FIDA weight functions therefore contain numerical noise that decreases

with the square root of the computer time allowed for their computation. We use

φ = (11◦, 64◦) for the two FIDA views available at ASDEX Upgrade. The measurements

M are evenly distributed in the wavelength intervals 649 nm < λ < 654 nm and

659 nm < λ < 663 nm. FIDA light cannot be observed in the wavelength interval

654 nm < λ < 659 nm due to beam emission and halo neutrals [16], and so we

exclude this wavelength range also in the synthetic measurements. Figure 12 shows

a tomography of the original function (figure 8) from synthetic measurements for the

two-view FIDA system at ASDEX Upgrade and demonstrates that our prescription also

works for FIDA measurements. The original has N1 = 350× 701 grid points which was
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here diagnosed by M = 2 × 90 = 180 measurements, and the tomography in figure 12

has N2 = 30× 61 = 1830 grid points. We here use the largest 80 singular values for the

computation of the Moore-Penrose pseudoinverse.
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Figure 12. Tomography with N2 = 30 × 61 pixels from the two-view FIDA system

with φ = (11◦, 64◦) and M = 2× 90 = 180 simulated measurements.

8. Analogy between real-space tomography and velocity-space tomography

Computed tomography in real space is a well developed technique with applications in

medical diagnostics, geo- and astrophysics, material science and many other disciplines

[17, 18]. An important application is medical imaging in x-ray CT scanners, in MRI

scanners, or in PET scanners. For example, x-ray CT scanners measure the absorption

of several narrow x-ray beams through the patient. The absorption of x-rays depends

on the tissue type, e.g. bones, muscle tissue, or fatty tissue. CT with x-rays may

be done using a single x-ray source and a detector that are moved together to scan a

beam through the patient. One viewing angle on the patient is not enough because

the measurement is line-integrated and it is not known where along the line-of-sight the

x-rays have been absorbed. In CT scanners the source-detector arrangement is rotated,

and the patient is scanned at another angle. By scanning the patient at many angles

one can deduce a tomography of absorption coefficients that in turn give the tissue type.

We note that tomographies in medical imaging thankfully operate with overdetermined

systems of equations to obtain their accurate results.

It would be misleading to identify the FIDA or CTS projection angle φ with the

viewing angle of the rotating apparatus of medical CT scanners. In plasmas in fact

we have an intrinsic rotation of the object that allows a multitude of measurements:

The gyration of the ions about the magnetic field. This gyration allows measurements

of an ion at different frequency shifts via equations 1 and 2. It is this multitude of

frequency-space measurements in velocity-space tomography that is analogue to the

different viewing angles in real-space tomography. Many viewing angles in velocity

space improve tomographies under realistic conditions but they are not essential under

idealized conditions. For that reason one single CTS or FIDA view suffices for a

tomography of the velocity-space distribution function in an idealized situation if just

the resolution of the frequency-space measurements is high enough.
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9. Conclusions

We have presented a new prescription for tomographic reconstruction of 2D fast-ion

velocity distribution functions from CTS and FIDA measurements. By computing

tomographies from synthetic measurements, we have demonstrated our prescription to

give accurate tomographies of arbitrary functions in an idealized situation, and we have

shown promise and limits of its application to real experiments. Our tomographic

and theoretical results contradict the conventional wisdom that at least two CTS

or FIDA views would necessarily be required for tomography of fast-ion velocity

distribution functions [12, 22–32]. In an idealized situation in fact just one single

CTS or FIDA view suffices to compute an accurate tomography. Under simulated

experimental conditions, tomographies contain salient features of the original fast-ion

velocity distribution function showing that 2D information can be recovered from the 1D

measurements in one single view. The lopsidedness of a beam ion velocity distribution

and the peak location of a drifting Maxwellian function can correctly be reproduced in

single-view tomographies for a range of angles but otherwise single-view tomographies

do not resemble the original functions. For many-view systems the resemblance of the

tomography and the original improves each time a new CTS or FIDA view is added,

even if the resolution is varied inversely proportional to the number of views so that

the total number of measurements in all views is constant. For a four-view system, the

tomography of a realistic beam ion velocity distribution function at ASDEX Upgrade

resembles the original function well in general shape and location of the beam injection

sources at full and half energies. By applying our prescription to a set of real CTS or

FIDA measurements with many views, one could determine a tomography of the 2D

fast-ion velocity distribution function experimentally.
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