170 research outputs found

    Targeting Neuropeptides to Bone Fractures for Accelerated Healing

    Get PDF
    In patients over the age of 65 especially, bone fractures represent a significant disease burden. Non-invasive drug therapies are not available for bone fractures which represents a problem for this population. Vasoactive intestinal peptide (VIP) and Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP), two neuromodulator peptides in the glucagon superfamily, have demonstrated positive regulation of osteoblast proliferation and activity. Using acidic oligopeptides, we have developed ligands that target to and accumulate at fracture sites. These targeting ligands can be synthesized in sequence with bone anabolic peptides to minimize off target effects and increase potency at the fracture site to create safer and more efficacious therapeutic molecules. The conjugation of PACAP and VIP to acidic oligopeptide targeting ligands results in compounds that demonstrate significant improvements in regeneration of bone at fracture site in vivo in terms of strength and mineralization of fracture callus

    Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations

    Get PDF
    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling

    Comparison of Node-Centered and Cell-Centered Unstructured Finite-Volume Discretizations: Viscous Fluxes

    Get PDF
    Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom

    Dysfunctional stem and progenitor cells impair fracture healing with age

    Get PDF
    Successful fracture healing requires the simultaneous regeneration of both the bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature that supplies blood to the fracture site. In the elderly, the healing process is slowed, partly due to decreased regenerative function of these stem and progenitor cells. MSCs from older individuals are impaired with regard to cell number, proliferative capacity, ability to migrate, and osteochondrogenic differentiation potential. The proliferation, migration and function of EPCs are also compromised with advanced age. Although the reasons for cellular dysfunction with age are complex and multidimensional, reduced expression of growth factors, accumulation of oxidative damage from reactive oxygen species, and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at the cellular level of both MSCs and EPCs. Because of these geriatric-specific issues, effective treatment for fracture repair may require new therapeutic techniques to restore cellular function. Some suggested directions for potential treatments include cellular therapies, pharmacological agents, treatments targeting age-related molecular mechanisms, and physical therapeutics. Advanced age is the primary risk factor for a fracture, due to the low bone mass and inferior bone quality associated with aging; a better understanding of the dysfunctional behavior of the aging cell will provide a foundation for new treatments to decrease healing time and reduce the development of complications during the extended recovery from fracture healing in the elderly

    Dew-worms in white nights: High-latitude light constrains earthworm (Lumbricus terrestris) behaviour at the soil surface

    Get PDF
    Soil is an effective barrier to light penetration that limits the direct influence of light on belowground organisms. Variation in aboveground light conditions, however, is important to soil-dwelling animals that are periodically active on the soil surface. A prime example is the earthworm Lumbricus terrestris L. (the dew-worm), an ecosystem engineer that emerges nocturnally on the soil surface. In the summer, the northernmost populations of L. terrestris are exposed to a time interval with no daily dark period. During a two-week period preceding the summer solstice, we studied the constraints that boreal night illumination imposes on L. terrestris surface activity by comparing their behaviour under ambient light with artificially-induced darkness. Looking for evidence of geographical divergence in light response, we compared the behaviour of native L. terrestris (Jokioinen, S–W Finland; 60°48′N) with two markedly more southern populations, from Preston (Lancashire, UK; 53°47′N) and Coshocton (Ohio, USA; 40°22′N) where the nights have a period of darkness throughout the year (total latitudinal range ca. 2300 km). Under ambient light conditions, L. terrestris emergence on the soil surface was diminished by half compared with the darkened treatment and it peaked at the darkest period of the night. Also mating rate decreased considerably under ambient light. The native dew-worms were generally the most active under ambient light. They emerged earlier in the evening and ceased their activity later in the morning than dew-worms from the two more southerly populations. The differences in behaviour were, however, significant mainly between native and UK dew-worms. In the darkened treatment, the behaviour of the three earthworm origins did not differ. Under the experimental conditions light condition was the dominant environmental factor controlling surface activity, but elevated night-time air temperature and humidity also encouraged dew-worm emergence without discernible differences among geographical origins. Our results show, that in boreal summer, the high level of night illumination strongly limits soil-surface activity of dew-worms. Considering the important regulatory role of L. terrestris in many ecosystem processes, this can have significant corollaries in dew-worm impacts on the environment. Although evidence for geographical differentiation in behaviour was obtained, the results point to phenotypic flexibility in L. terrestris light response

    Contrast Enhanced Micro-Computed Tomography Resolves the 3-Dimensional Morphology of the Cardiac Conduction System in Mammalian Hearts

    Get PDF
    The general anatomy of the cardiac conduction system (CCS) has been known for 100 years, but its complex and irregular three-dimensional (3D) geometry is not so well understood. This is largely because the conducting tissue is not distinct from the surrounding tissue by dissection. The best descriptions of its anatomy come from studies based on serial sectioning of samples taken from the appropriate areas of the heart. Low X-ray attenuation has formerly ruled out micro-computed tomography (micro-CT) as a modality to resolve internal structures of soft tissue, but incorporation of iodine, which has a high molecular weight, into those tissues enhances the differential attenuation of X-rays and allows visualisation of fine detail in embryos and skeletal muscle. Here, with the use of a iodine based contrast agent (I2KI), we present contrast enhanced micro-CT images of cardiac tissue from rat and rabbit in which the three major subdivisions of the CCS can be differentiated from the surrounding contractile myocardium and visualised in 3D. Structures identified include the sinoatrial node (SAN) and the atrioventricular conduction axis: the penetrating bundle, His bundle, the bundle branches and the Purkinje network. Although the current findings are consistent with existing anatomical representations, the representations shown here offer superior resolution and are the first 3D representations of the CCS within a single intact mammalian heart

    Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire

    Get PDF
    The cellular immune system screens peptides presented by host cells on MHC molecules to assess if the cells are infected. In this study we examined whether the presented peptides contain enough information for a proper self/nonself assessment by comparing the presented human (self) and bacterial or viral (nonself) peptides on a large number of MHC molecules. For all MHC molecules tested, only a small fraction of the presented nonself peptides from 174 species of bacteria and 1000 viral proteomes (0.2%) is shown to be identical to a presented self peptide. Next, we use available data on T-cell receptor-peptide-MHC interactions to estimate how well T-cells distinguish between similar peptides. The recognition of a peptide-MHC by the T-cell receptor is flexible, and as a result, about one-third of the presented nonself peptides is expected to be indistinguishable (by T-cells) from presented self peptides. This suggests that T-cells are expected to remain tolerant for a large fraction of the presented nonself peptides, which provides an explanation for the “holes in the T-cell repertoire” that are found for a large fraction of foreign epitopes. Additionally, this overlap with self increases the need for efficient self tolerance, as many self-similar nonself peptides could initiate an autoimmune response. Degenerate recognition of peptide-MHC-I complexes by T-cells thus creates large and potentially dangerous overlaps between self and nonself

    Synthesis of tenascin and laminin beta2 chain in human bronchial epithelial cells is enhanced by cysteinyl leukotrienes via CysLT1 receptor

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cysteinyl leukotrienes (CysLTs) are key mediators of asthma, but their role in the genesis of airway remodeling is insufficiently understood. Recent evidence suggests that increased expression of tenascin (Tn) and laminin (Ln) β2 chain is indicative of the remodeling activity in asthma, but represents also an example of deposition of extracellular matrix, which affects the airway wall compliance. We tested the hypothesis that CysLTs affect production of Tn and Ln β2 chain by human bronchial epithelial cells and elucidated, which of the CysLT receptors, CysLT<sub>1 </sub>or CysLT<sub>2</sub>, mediate this effect.</p> <p>Methods</p> <p>Cultured BEAS-2B human bronchial epithelial cells were stimulated with leukotriene D<sub>4 </sub>(LTD<sub>4</sub>) and E<sub>4 </sub>(LTE<sub>4</sub>) and evaluated by immunocytochemistry, Western blotting, flow cytometry, and RT-PCR. CysLT receptors were differentially blocked with use of montelukast or BAY u9773.</p> <p>Results</p> <p>LTD<sub>4 </sub>and LTE<sub>4 </sub>significantly augmented the expression of Tn, whereas LTD<sub>4</sub>, distinctly from LTE<sub>4</sub>, was able to increase also the Ln β2 chain. Although the expression of CysLT<sub>2 </sub>prevailed over that of CysLT<sub>1</sub>, the up-regulation of Tn and Ln β2 chain by CysLTs was completely blocked by the CysLT<sub>1</sub>-selective antagonist montelukast with no difference between montelukast and the dual antagonist BAY u9773 for the inhibitory capacity.</p> <p>Conclusion</p> <p>These findings suggest that the CysLT-induced up-regulation of Tn and Ln β2 chain, an important epithelium-linked aspect of airway remodeling, is mediated predominantly by the CysLT<sub>1 </sub>receptor. The results provide a novel aspect to support the use of CysLT<sub>1 </sub>receptor antagonists in the anti-remodeling treatment of asthma.</p

    HLA Class I Binding of HBZ Determines Outcome in HTLV-1 Infection

    Get PDF
    CD8(+) T cells can exert both protective and harmful effects on the virus-infected host. However, there is no systematic method to identify the attributes of a protective CD8(+) T cell response. Here, we combine theory and experiment to identify and quantify the contribution of all HLA class I alleles to host protection against infection with a given pathogen. In 432 HTLV-1-infected individuals we show that individuals with HLA class I alleles that strongly bind the HTLV-1 protein HBZ had a lower proviral load and were more likely to be asymptomatic. We also show that in general, across all HTLV-1 proteins, CD8(+) T cell effectiveness is strongly determined by protein specificity and produce a ranked list of the proteins targeted by the most effective CD8(+) T cell response through to the least effective CD8(+) T cell response. We conclude that CD8(+) T cells play an important role in the control of HTLV-1 and that CD8(+) cells specific to HBZ, not the immunodominant protein Tax, are the most effective. We suggest that HBZ plays a central role in HTLV-1 persistence. This approach is applicable to all pathogens, even where data are sparse, to identify simultaneously the HLA Class I alleles and the epitopes responsible for a protective CD8(+) T cell response
    corecore