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Abstract
Successful fracture healing requires the simultaneous regeneration of both the
bone and vasculature; mesenchymal stem cells (MSCs) are directed to replace the
bone tissue, while endothelial progenitor cells (EPCs) form the new vasculature
that supplies blood to the fracture site. In the elderly, the healing process is
slowed, partly due to decreased regenerative function of these stem and
progenitor cells. MSCs from older individuals are impaired with regard to cell
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number, proliferative capacity, ability to migrate, and osteochondrogenic
differentiation potential. The proliferation, migration and function of EPCs are
also compromised with advanced age. Although the reasons for cellular
dysfunction with age are complex and multidimensional, reduced expression of
growth factors, accumulation of oxidative damage from reactive oxygen species,
and altered signaling of the Sirtuin-1 pathway are contributing factors to aging at
the cellular level of both MSCs and EPCs. Because of these geriatric-specific
issues, effective treatment for fracture repair may require new therapeutic
techniques to restore cellular function. Some suggested directions for potential
treatments include cellular therapies, pharmacological agents, treatments
targeting age-related molecular mechanisms, and physical therapeutics.
Advanced age is the primary risk factor for a fracture, due to the low bone mass
and inferior bone quality associated with aging; a better understanding of the
dysfunctional behavior of the aging cell will provide a foundation for new
treatments to decrease healing time and reduce the development of complications
during the extended recovery from fracture healing in the elderly.

Key words: Fracture healing; Aging; Bone; Angiogenesis; Mesenchymal stem cells;
Endothelial progenitor cells
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Core tip: Bone fractures in the elderly are a significant issue, due to the prevalence of the
problem, the difficulty of treatment, and the severe consequences of the extended healing
period. The delay in fracture healing with advanced age has been attributed to both the
decreased number and function of mesenchymal stem cells that regenerate the bone and
the inferior performance of endothelial progenitor cells that direct angiogenesis. Some
suggested avenues for potential treatments include cellular therapies, pharmacological
agents, treatments targeting age-related molecular mechanisms, and physical
therapeutics.
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INTRODUCTION
Aging is the dominant risk factor for fractures, primarily due to low bone mass and
poor bone quality in the elderly[1]. While persons 65 years or older currently account
for 13% of the United States population[2], they account for more than 50% of hospital
admissions with a musculoskeletal injury which are primarily fractures[3]. Fractures in
the elderly population are associated with a unique set of geriatric-specific mana-
gement challenges. In addition to treatment for a fracture, elderly patients are more
likely to be simultaneously treated for additional medical or surgical issues which
affect  healing and outcomes.  In  addition,  low bone mass  and poor bone quality
impart technical difficulty in achieving stable internal fixation with plates, screws,
nails  and  wires  in  surgically  treated  fractures[4-10].  For  example,  studies  have
demonstrated that arthroplasty is typically necessary to avoid predictable healing
failure that results from loss of surgical fixation and fracture reduction in elderly
fractures of the shoulder, elbow, and hip[4,5,11-13]. In addition, periprosthetic fractures
that occur around hip and knee replacement prostheses are increasing exponentially
and will  continue to increase with the aging population[14-16].  These fractures are
particularly challenging for orthopaedic surgeons and healing failure can result in
amputation and complete lifelong immobility.

Successful  fracture  healing requires  that  both the mineralized tissue and vas-
culature regenerate simultaneously to repair the highly vascularized bone (Figure 1).
In fact, the processes of bone tissue regeneration and angiogenesis have significant
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interactions between them during fracture healing. In secondary fracture healing, i.e.,
in the absence of rigid fixation, the healing process begins when a hematoma forms
soon  after  the  injury  with  subsequent  acute  inflammation  at  the  fracture  site.
Inflammatory  cytokines  as  well  as  growth  factors  are  released  to  signal  the
recruitment  of  mesenchymal  stem  cells  (MSCs)  to  the  injury[17,18].  Resident  and
infiltrating macrophages also influence the homing and localization of MSCs[18]. The
recruited MSCs are  multipotent,  mesodermally  derived cells  that  are  capable  of
proliferating and differentiating into various cell types including osteoblasts and
chondrocytes[19]. Recent evidence supports that the MSCs that home to the fracture site
for  repair  derive  primarily  from the  local  periosteum[20,21].  Once  the  MSCs have
reached their  target  site,  circulating growth factors such as bone morphogenetic
proteins (BMPs) induce their differentiation into osteoblasts and chondrocytes to
initiate the formation of a cartilaginous callus bridge between the bone fragments[21].
Subsequently, the chondrocytes become hypertrophic and undergo endochondral
ossification. Both osteoblasts and hypertrophic chondrocytes express high levels of
vascular endothelial growth factor (VEGF), a key mediator of angiogenesis and a
requisite component of fracture healing[22,23]. VEGF modulates bone repair through the
induction of endothelial  progenitor cells (EPCs) to increase blood vessel density,
providing access for nutrients and cells to the site. With an established vasculature,
newly formed osteoblasts begin to replace the soft cartilaginous callus with a stronger
osseous one, effectively uniting fragmented bones. Over time, the osseous callus is
remodeled into vascularized lamellar bone with a central bone marrow cavity at the
diaphysis.

Advanced age is a risk factor for impaired fracture healing[24,25]  with increased
morbidity  and  mortality[26-28]  as  well  as  increased  costs.  Increased  age  has  been
correlated to healing complications in the tibial shaft[29], clavicle[30], femoral neck[31],
and floating knee injuries[32]. Delayed fracture healing, evidenced by a longer time to
regain the mechanical strength and mineral content in the bone, has been observed in
rodents[33-35]. In general, delayed fracture healing in elderly patients is thought to result
from  a  lower  capacity  for  MSC  differentiation  and  impaired  angio-/vasculo-
genesis[25].  These  phenomena  were  observed  by  Lu  et  al[36],  who  assessed  the
molecular, cellular and histological progression of tibia fractures in juvenile, middle-
aged  and  elderly  mice  and  reported  delayed  chondrocyte  differentiation  and
maturation,  vascular  invasion,  and  bone  formation  in  the  older  animals[36].  The
extended healing time may play a role in the development of serious complications
that emerge during prolonged immobilization and the consequent high mortality rate
with fractures in the geriatric population[37,38].

In this review, we describe the dysfunctional behavior of aging MSCs and EPCs
that contribute to impaired fracture healing in the elderly (Figure 1). Although the
causes of delayed fracture healing with advanced age are complex and multifactorial,
we highlight the reduction in growth factor expression, effects of reactive oxygen
species (ROS), and the role of the sirtuin-1 (SIRT1) signaling pathway as significant
factors in aging at the cellular level in MSCs and EPCs. Finally, we discuss potential
treatments  to  enhance  bone  fracture  healing  that  may  be  beneficial  for  elderly
patients.

MSC IMPAIRMENT WITH AGE
One of the factors for diminished fracture healing in the elderly is the altered behavior
of MSCs with respect to number, proliferation, migration ability, and differentiation
potential with age[20]. In bone marrow and adipose tissue from different species such
as non-human primates[39], humans[40-42], mice[43-45], and rats[46] there was a pronounced
age-dependent difference in the number of MSCs based on the colony forming unit
(CFU) assay; MSCs from younger individuals were more numerous as they formed
up  to  50%  more  CFUs  than  older  individuals[40-44,46].  MSCs  have  also  been  cha-
racterized by their positive expression of surface markers such CD90, CD44, and
CD73. In a study on human marrow-derived MSCs, Stolzing et al[45] found that young
cells expressed more CD90, CD105, and Stro-1 and old cells expressed more CD44.
The effect of aging on cell surface markers was also observed by Yu et al[39] in MSCs
isolated from the bone marrow of  rhesus macaques.  The MSCs from young and
middle-aged individuals  had a higher percentage of  CD90+ cells  than the MSCs
derived from older individuals, whereas, the MSCs from older individuals had a
higher percentage of CD44+ cells.

The proliferative potential of MSCs also declines with age. The doubling times in
MSCs isolated from human bone marrow was 0.9 and 1.7 days in cells from younger
and older individuals, respectively[40]. This increase in cell doubling time with age was
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Figure 1

Figure 1  Fracture healing is impaired with advanced age, including delays in both bone and vascular regeneration due to dysfunction of mesenchymal
stem cells and endothelial cells. MSC: Mesenchymal stem cell.

also observed in MSCs isolated from adipose tissue; cell doubling times increased
from approximately 2.6 d in MSCs from younger individuals to 3.8 d in MSCs from
older individuals[41,42]. The proliferation rate was also reduced in MSCs isolated from
mouse bone marrow by 20% in older animals[44].

The age of the patients not only affects the number and proliferative potential of
MSCs but also their ability to migrate to the site of injury, which plays an important
role in their regenerative function. It was observed that MSCs from older rats showed
lower motility on uncoated filters than those from younger animals[47]. In a different
study,  twice  as  many  bone  marrow-derived  MSCs  from  younger  rats  migrated
towards the chemokine SDF-1 as those from older rats[48]. The decrease in the motility
or migration potential  of  old MSCs may be due to their  decreased expression of
chemokine receptors[48,49]. In an interesting study on the effect of age on bone marrow
microenvironment and migration of MSCs, Yang et al[50] found that co-culture with
bone marrow aspirate from old mice reduced the migration of an MSC cell line. The
authors also found that the bone marrow aspirate from older mice expressed less
SDF-1[50].  Together,  these studies suggest that the reduced migratory potential of
MSCs from in older individuals may be due reductions in both the MSC expression of
chemotactic receptors and in chemotactic cytokines secreted by the older tissue. All of
these factors together might contribute toward reduced migration of MSCs to the
fracture site in elderly patients leading to poor fracture healing.

An important distinguishing feature of MSCs is their ability to differentiate to the
osteogenic and chondrogenic lineages, among others. Various groups studying the
age-related changes in differentiation potential of MSCs have concluded differently.
Several groups have reported that the osteogenic differentiation potential of the MSCs
isolated  from  either  bone  marrow  or  adipose  tissue  is  reduced  as  age  advan-
ces[41,42,45,51,52]. Zhang et al[43] reported that osteogenic differentiation capacity of bone
marrow-derived MSCs from mice increases in an age-dependent manner to 18 mo of
age and decreases rapidly thereafter. In contrast to these studies, other groups found
the MSCs maintained their differentiation potential even in aged donors[53,54]. There is
also disagreement in the literature on whether age has an effect on the chondrogenic
potential  of  MSCs.  Some groups have reported an age-related reduction in their
chondrogenic potential[41,42,52]. In other studies, the chondrogenic potential of MSCs
was not affected with advanced age[45,51,55]. However, in all cases, the isolated MSCs
were cultured and differentiated in vitro where they lack the microenvironment of the
native tissue which might be different as the donors age. Conflicting findings in the
literature  with  respect  to  differentiation  potential  of  MSCs  isolated  from  older
individuals  require  further  studies  which  take  tissue  microenvironments  into
consideration to understand any changes in differentiation.

A decline in the expression of growth factors that induce MSC chondrogenic and
osteogenic differentiation have been proposed to contribute to impaired fracture
healing with age. For example, expression of BMP-2 and Indian hedgehog were at
significantly lower levels in the fracture calluses of older rats[56]. Additionally, the
response of MSCs to growth factors like BMP-2 may be attenuated with age. As an
example,  markers of  osteogenesis  in canine MSCs increased in all  animals when
treated with BMP-2 in culture, but the increase was less robust in cells from older
animals[57].  Similarly,  pediatric  human iliac  crest  MSCs were more responsive to
exogenous BMP-2 than adult MSCs from the same anatomic location based on the in
vitro expression of osteogenic markers[58].

The accumulation of ROS is another factor that may affect MSC function in the
aged population, resulting in oxidative damage to DNA, structural lipids and proteins
as well as cellular senescence[46]. Oxidative stress has been shown to increase during
fracture healing[59-61], however the effect of ROS on MSCs during fracture repair in
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aging is unclear. In a developmental model of bone formation, chondrogenesis was
enhanced by ROS in the developing limb bud, where a cartilage template precedes
long bone formation[62]. High levels of ROS have also been associated with hyper-
trophic  chondrocytes  that  are  undergoing  endochondral  ossification  in  vitro[63].
Furthermore,  the  addition  of  an  antioxidant  to  cell  culture  media  inhibited
chondrocyte  hypertrophy,  while  elevated  ROS  stimulated  chondrocyte  hyper-
trophy[63]. Osteogenesis through intramembranous ossification, on the other hand, is
inhibited  by  elevated  levels  of  ROS[64-66]  and  intracellular  ROS levels  have  been
observed  to  dramatically  decrease  upon  osteogenic  differentiation  due  to  the
upregulation of antioxidant enzymes superoxide dismutase 2 (SOD2) and catalase[66].

Among  the  molecular  regulators  of  aging,  SIRT1,  a  NAD-dependent  histone
deacetylase, is of particular importance. SIRT1 expression and activation decrease
with age, which modifies a wide range of cellular processes, including MSC pro-
liferation and differentiation. For example, SIRT1 knockdown in human marrow- and
adipose-derived MSCs resulted in reduced proliferation in  vitro[67].  Additionally,
MSCs isolated from Sirt1 knock-out mice showed reduced differentiation toward the
osteogenic lineage[68]. while Sirt1+/- female mice had reduce bone mass and increased
marrow adipogenesis[69].  Differentiation  to  the  chondrogenic  lineages  were  also
inhibited in MSCs isolated from Sirt1 knockout mice[68] and with SIRT1 knockdown[70].

IMPAIRED EPCS WITH AGING
Blood supply is critical for fracture healing. Formation of sufficient vasculature at the
fracture sites provides oxygen and nutrients for cell survival and proliferation. Aging
has negative effects on angiogenesis which can lead to delayed healing or non-union
of fractures[36,71].  Vascular changes such as the decline in endothelial function are
reliable  markers  for  aging[72-75].  Highly proliferative  EPCs,  also  described as  late
outgrowth EPCs or endothelial colony forming cells (ECFCs), are believed to play an
important role in maintenance of the viable endothelial layer in the vascular sys-
tem[76-78].

Aging decreases endothelial cell (EC) proliferation and migration, as well as the
expression of EC growth factors and their cognate receptors[79-81]. Aging is also a major
cause  for  endothelial  dysfunction  and  microvascular  hypermeability[82,83].  The
mechanisms underlying age-related endothelial dysfunction likely involve increased
oxidative  stress  and alterations  in  molecular  pathways affecting common aging
processes.  Importantly,  EPC dysfunction and senescence contribute to oxidative
stress[84].

Age  related  mitochondrial  dysfunction  is  a  likely  candidate  to  explain  this
endothelial progenitor dysfunction. Mitochondria-derived production of ROS results
in increased oxidative stress in ECs. Attenuation of mitochondrial oxidative stress in a
genetically modified mouse model of  overexpression of human catalase in mito-
chondria  improved  endothelial  function[85].  Conversely,  genetic  deletion  of  the
mitochondrial antioxidant proteins, mitochondrial SOD and glutathione peroxidase 1,
exacerbated age-related vascular dysfunction[86,87]. Age-related oxidative stress may
also be caused by increased activity of NADPH oxidase in ECs[88]. Increased oxidative
stress in aged ECs inactivates nitric oxide (NO)[88,89]. Impaired bioavailability of NO
negatively affects cell  division and survival,  mitochondrial  function and cellular
energy metabolism, and EPCs[90].

SIRT1 is an important molecular regulator in ECs[91] in addition to its role in MSCs.
SIRT1 expression and activity decreases with aging in the vasculature. Accordingly,
pharmacological activation of SIRT1 significantly improves endothelial function in
aged mice[92].  Similarly,  cleavage of  SIRT1 by cathepsin in EPCs mediates stress-
induced premature senescence[93].

Age is also a limiting factor for mobilization of EPCs including ECFCs[94-96]. Thus, it
appears  that  the  decrease  in  number  and/or  function  of  ECFCs,  a  homogenous
population of EPCs, may be a major driver for failed fracture repair in elderly pati-
ents. Previous studies suggest age-related EPC dysfunction may be reversible by anti-
aging intervention[97]. Preclinical studies also showed that the serum factors derived
from young rats have beneficial effects on EPCs isolated from aged ones[98,99].

In addition to their role in fracture healing, MSCs share properties with pericytes
and are important for vascular network formation[99]. Pericytes have an important role
in angiogenesis and could be a novel therapeutic target because of their involvement
in regulation of capillary permeability,  EC proliferation and extracellular matrix
generation[100,101].  In  fact,  age-related  loss  of  pericyte  coverage  of  microvessels
contributes to function and structural impairment of microcirculatory network[100].
Interestingly, when adipose derived mesenchymal and endothelial stem cells are
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brought in close contact, a Wnt signaling specific mechanism favors osteogenic versus
adipogenic differentiation[102,103].  It remains to be elucidated if treatment targeting
pericytes could enhance bone healing in aging.

Dysfunction of aged ECs and EPCs lead to endothelial senescence and apoptosis
and directly interfered with angiogenesis in aging[82,104-106].  Age-related changes in
circulation factors might also contribute to impaired angiogenesis  in aging.  Pro-
angiogenic endocrine factors, growth hormone, insulin like growth factor I, platelet
derived  growth  factor  (PDGF)  and  VEGF,  which  regulate  multiple  aspects  of
angiogenic processes, decline with aging[95,107-109]. This may be explained by reduced
expression  of,  and  responsiveness  to,  HIF-1alpha  during  aging[110].  Impaired
angiogenesis also results in age-related decline in vessel density, impaired adaptation
to hypoxia, and ischemia[111].

Impaired angiogenesis during fracture healing creates an ischemic environment at
the fracture site and disrupts the interactions between the blood supply and MSCs
that are required for bone healing. In a mouse model of fracture accompanied by
vascular damage, ischemia significantly decreased the callus size, and the cartilage
and bone formation, leading to delayed union[112]. Similar results have been seen in in
vitro culture of MSCs in hypoxic environments. Hypoxia was found to be linked to
reduced osteogenic potential of MSCs, evidenced by the down regulation of many
osteogenic markers[113] and osteogenic pathways such as RUNX2[114]. Hypoxia has also
been found to inhibit hypertrophic differentiation of chondrocytes and endochondral
ossification[115]. Thus, a disruption to the angiogenesis process due to aging may have
profound effects on MSC behavior at the fracture site, leading to delayed fracture
healing.

POTENTIAL TREATMENT OPPORTUNITIES FOR IMPROVED
FRACTURE HEALING IN AGING

Cell-based therapies
Successful management of bone fractures in the elderly may require special measures
not commonly indicated in younger individuals. As native MSCs and EPCs may be
compromised with respect to number and/or function with advanced age, delivering
these cells to the fracture site is one potential avenue to accelerate fracture repair.

Bone tissue engineering has been investigated intensively for three decades, but
efforts to date have not yielded a cell-seeded implant which can be used clinically.
Most  tissue  engineering  approaches  target  intramembranous  or  direct  bone
formation, but this approach has had poor outcomes because the cells must initially
survive in an avascular hypoxic environment before the invasion of vasculature.
Without vasculature, nutrient delivery and waste removal are severely compromised
in  the  center  of  the  implant,  causing  cell  necrosis  and  failure  of  cell-seeded
implants[113,116]. A relatively new technique to address this issue exploits the tendency
of MSCs to undergo a process resembling hypertrophy when cultured under standard
chondrogenic differentiation conditions[117,118]. In this regenerative strategy, bone tissue
is  generated  via  the  endochondral  ossification  pathway,  where  a  cartilaginous
template is first formed and later remodeled into mature bone. One advantage of
endochondral bone tissue engineering is that the chondrogenic cells function much
better than osteogenic cells in low-oxygen environments such as the avascular region
of a bone defect[113,119]. Therefore, the chondrogenic cells are maintained in the implant
site until the vasculature invades, at which time the hypertrophic cells induce bone
formation, as in secondary native fracture healing. Because the cells undergo a process
that resembles hypertrophy, they release an array of growth factors for vascular and
bone formation that are spatially and temporally controlled. The feasibility of this
technique  has  been  demonstrated  using  embryonic  stem  cell[120],  marrow-  and
adipose-derived  MSCs[121-129],  and  the  murine,  chondrocytic  cell  line  ATDC5[130].
Recently, fracture healing through endochondral ossification using hypertrophically
primed MSCs in a collagen construct was demonstrated in a weight bearing femoral
defect model in rats[131].  In fact, endochondral ossification has been shown to be a
better alternative than intramembranous bone regeneration by Thompson et al[132],
where  the  chondrogenically  primed MSCs supported greater  repair  of  a  cranial
critical-sized defect (CSD)[132].

Another cell-therapy approach to improve bone healing is to enhance angiogenesis
with ECFCs. Currently, implantation of ECFCs has been tested in animals and is
currently being investigated in human clinical trials for other indications, such as
myocardial  infarction,  ischemic  stroke,  liver  cirrhosis,  and diabetic  foot[133].  Our
group[134] and others[135-140] have recently shown the utility of using ECs for bone repair.
ECFCs were selected based on their proliferative potential, expression of CD31 and
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CD309, as well as their ability to take-up acetylated low-density lipoproteins[141].
ECFCs can induce neovascularization at the bone defect site, and stimulate fracture

repair and bone regeneration in young rats[134]. ECFCs (106 cells) were seeded into a
type I collagen sponge and transplanted into the bone defect during fracture surgery.
The data  showed that  ECFCs induced more new blood vessels  compared to  the
unseeded type I collagen controls[134]. Furthermore, new bone was formed within the
defect area when implanted with ECFCs, but no bone was observed in the controls[134].
Histological examination showed that osteocytes, osteoblasts, and osteoclasts were
observed in newly formed bone tissues in ECFC treated animals at 6 weeks[134]. These
data suggest that ECFCs can increase neovascularization and stimulate new bone
formation in the damaged bone area with a CSD that normally fails to heal.

In  another  study  by  our  group,  hydroxyapatite  and  tri-calcium  phosphate
(HA/TCP) scaffolds loaded with ECFCs (106 cells) were placed into the fibula defect.
Histological  examination  showed  significantly  greater  newly  formed  bone  in
HA/TCP scaffolds loaded with ECFCs than that observed in the HA/TCP scaffold
only  animals[134],  suggesting that  ECFCs may migrate  and further  enhance  bone
regeneration inside the scaffold.

Pharmacological agents
Because the endogenous concentrations of bone anabolic agents that facilitate fracture
repair can be significantly reduced in the elderly, one obvious remedy hypothesized
for enhancement of their healing process has been to supplement the patient’s natural
levels of bone anabolic agents. Recognizing that BMP-2 can potently augment the rate
of bone fracture repair, Medtronic Inc. has explored the local application of BMP-2
(Infuse) to a fracture surface to accelerate the healing process. While success has been
documented for enhancement of recovery from open tibial shaft fractures[142,143], dental
and facial reconstruction surgeries[144,145], and spinal fusion procedures[146,147], the same
methodology cannot be applied when fracture surfaces cannot be physically exposed.
Thus, those fractures that do not require surgical intervention cannot be treated with
BMP-2 dosing through local delivery. Moreover, repeated administration of a bone
anabolic agent is not possible with this strategy, since the fracture surface is usually
only accessible during the initial reconstruction/stabilization surgery.

A second method to augment endogenous levels of osteogenic agents was explored
by Eli Lilly and Co. when they examined the use of parathyroid hormone (Forteo) to
accelerate the repair rate of tibial[148-150]  and hip fractures[151,152].  While measurable
improvement in the healing process was documented in many patients, the phase 3
trial failed to reach its clinical endpoint due to concerns over the induced hyper-
calcemia that was observed as therapeutically effective concentrations of drug were
approached. Although the potentially deleterious consequences of the hypercalcemia
forced discontinuation of the clinical trial, the results suggested that a more targeted
form of parathyroid hormone might succeed if it could concentrate that drug at the
site of the fracture and reduce its concentration in healthy tissues.

Looking to the future, a large number of peptide and protein hormones that are
commonly released at the site of a wound have been reported to exhibit bone anabolic
activity. These include FGF2[153-156],  PTHrP[157-159],  PDGF[160-162],  Prostaglandins[163-165],
IGF[166], VEGF[167,168] and others. Because virtually all of these stimulants are known to
have multiple anabolic activities that can cause undesirable changes in healthy tissues,
it is unlikely that any will prove useful as bone fracture repair drugs unless they can
be applied locally to the fracture surface or targeted to the same fracture surface
following systemic administration. Hopefully, with the design of new bone fracture
homing ligands, such fracture targeted anabolic agents can be developed for less
invasive therapies of fractures in the elderly.

Therapies targeting age-related molecular mechanisms
Aging at the cellular level is associated with increased ROS production and decreased
endogenous antioxidant levels, leading to accumulation of oxidative damage and
cellular  senescence.  Therefore,  antioxidants  have  been  studied  as  a  therapy  to
improve  a  variety  of  health  outcomes,  including  fracture  healing.  Antioxidants
vitamin E[169,170],  melatonin[171,172],  and N-acetylcysteine[173]  have all  been shown to
promote fracture healing in animal models.  Cellular senescence itself  can induce
chronic inflammatory disease in mice, and depletion of senescent cells by so called
senolytic agents can reduce systemic inflammation and extend life span in small
rodent by 37%[174-178]. Importantly, targeting cellular senescence prevents age-related
bone loss in mice[179]. Therefore, it appears to be promising to identify ways to reduce
the generation and maintenance of senescent progenitor cells. This widely overlooked
aspect  is  of  particular  interest  because  a  high  number  of  senescent  cells  with
detrimental functions are to be expected during aging and aging-associated infla-
mmatory conditions.
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Another potential target for improving fracture healing in aging is SIRT1[91];  as
described above, it appears to be involved in the age-related decline in both MSC and
EC function. Furthermore, crosstalk between SIRT1 activity and ROS production
plays a crucial role in the aging process[180]. SIRT1 expression and activity decreases
with aging. Accordingly, pharmacological activation of SIRT1 improves the survival
of aged MSCs upon transplantation[21] and also significantly improves endothelial
function in aged mice[92]. Similarly, cleavage of SIRT1 by cathepsin in EPCs mediates
stress-induced premature senescence[93]. Most notably, pharmacological activation of
SIRT1 increased bone mass in mouse models of osteoporosis[181].

Physical therapeutics
Physical  therapeutics are non-invasive and non-pharmacological  treatments that
cause physiologic cascades in the body to affect measurable change in molecular and
tissue function, leading to improved functional outcomes[182-184]. Movement therapies
and therapeutic modalities are two approaches frequently used in the clinic that
should be considered within the context of fracture healing and aging.

Movement approaches may include ambulation and therapeutic exercise, both of
which mobilize physiological responses secondary to mechanical loading. While the
effects of these treatments have not been fully explored in humans, it has been shown
that mechanical loading of cells in vitro can impact gene expression and bone-derived
mesenchymal cell  (MSC) differentiation into three types of tissue: Fat,  bone, and
cartilage[185].  Even short  durations of compression can cause an increase in diffe-
rentiation  and calcium mineralization  in  certain  cultures[186].  Another  benefit  of
mechanical loading during cyclical compression, which mimics gait, of human MSCs
is an improvement in oxygenation of the fracture’s hematoma that benefits cellular
metabolism and the ability to heal[187]. One study investigated the effects of functional
mechanical loading on large bone defect regeneration in vivo. Bone CSDs in rat femora
were stabilized using either stiff or compliant fixation plates that allowed compressive
loading during ambulation. Findings demonstrated that functional transfer of axial
loads during segmental bone repair enhanced bone formation and regeneration[188].
Meanwhile, a retrospective cohort study observed that early ambulation/mobilization
of elderly patients with fractures improve outcomes faster than those who delay
mobilization[189]. In contrast, immobility was associated with higher mortality and
lower function[190].

Several  therapeutic modalities are used clinically to facilitate fracture healing,
including whole-body vibration (WBV) and pulsed ultrasound. Recent systematic
reviews  suggest  WBV  is  a  safe  and  effective  treatment.  Pre-clinical  trials  with
ovariectomized rats have shown those with diminished estrogen respond better to
WBV than those with normal levels[191-193]. Interestingly, a study observed an increase
in  osteogenic  potential  of  bone marrow with  WBV during a  period of  hindlimb
unloading compared to those with no treatment; this increase was expounded upon
later during re-ambulation and concurrent WBV[194].  Pulsed ultrasound may offer
another option for fracture healing in the elderly. Research has shown low-intensity
pulsed  ultrasound  to  decrease  osteoclastic  gene  expression[195]  decrease  MSC
adipocyte differentiation[195],  and foster MSC’s commitment to osteogenesis[196,197].
However, according to recent systematic reviews, there is a low level of evidence to
support its use in the early phases of fracture healing in elderly humans[198] and in
those undergoing distraction osteogenesis[199].

CONCLUSION
Bone fractures in the elderly are a significant issue,  due to the prevalence of the
problem, the difficulty of treatment, and the severe consequences of the extended
healing period. The delay in fracture healing with advanced age has been attributed
to the decreased number and function of MSCs that regenerate the bone and the
inferior performance of EPCs that participate in angiogenesis. The causes of cellular
aging and the concomitant decline in functionality are wide-ranging, but provide
some intriguing indications of potential targets for speeding fracture healing in older
individuals.  In  the  future,  cell  therapies  that  supplement  the  inadequate  native
cellular  response  with  MSCs  or  ECFCs;  bone  anabolic  pharmacological  agents,
particularly in combination with strategies  to  localize their  delivery to the bone
fracture; drugs that reduce oxidative stress, cellular senescence, or activate SIRT1;
and/or physical therapeutics may prove effective in promoting fracture healing in the
elderly.
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