570 research outputs found

    The dynamism of salt crust patterns on playas

    No full text
    Playas are common in arid environments and can be major sources of mineral dust that can influence global climate. These landforms typically form crusts that limit evaporation and dust emission, modify surface erosivity and erodibility, and can lead to over prediction or under prediction of (1) dust-emission potential and (2) water and heat fluxes in energy balance modeling. Through terrestrial laser scanning measurements of part of the Makgadikgadi Pans of Botswana (a Southern Hemisphere playa that emits significant amounts of dust), we show that over weeks, months, and a year, the shapes of these surfaces change considerably (ridge thrusting of >30 mm/week) and can switch among continuous, ridged, and degraded patterns. Ridged pattern development changes the measured aerodynamic roughness of the surface (as much as 3 mm/week). The dynamic nature of these crusted surfaces must be accounted for in dust entrainment and moisture balance formulae to improve regional and global climate models

    Anomalous Scaling and Solitary Waves in Systems with Non-Linear Diffusion

    Full text link
    We study a non-linear convective-diffusive equation, local in space and time, which has its background in the dynamics of the thickness of a wetting film. The presence of a non-linear diffusion predicts the existence of fronts as well as shock fronts. Despite the absence of memory effects, solutions in the case of pure non-linear diffusion exhibit an anomalous sub-diffusive scaling. Due to a balance between non-linear diffusion and convection we, in particular, show that solitary waves appear. For large times they merge into a single solitary wave exhibiting a topological stability. Even though our results concern a specific equation, numerical simulations supports the view that anomalous diffusion and the solitary waves disclosed will be general features in such non-linear convective-diffusive dynamics.Comment: Corrected typos, added 3 references and 2 figure

    Late Holocene relative sea levels near Palmer Station, northern Antarctic Peninsula, strongly controlled by late Holocene ice-mass changes

    Get PDF
    Many studies of Holocene relative sea-level (RSL) changes across Antarctica assume that their reconstructions record uplift from glacial isostatic adjustment caused by the demise of the Last Glacial Maximum (LGM) ice sheets. However, recent analysis of GPS observations suggests that mantle viscosity beneath the Antarctic Peninsula is weaker than previously thought, which would imply that solid Earth motion is not controlled by post-LGM ice-sheet retreat but instead by late Holocene ice-mass changes. If this hypothesis is correct, one might expect to find Holocene RSL records that do not reflect a monotonic decrease in the rate of RSL fall but show variations in the rate of RSL change through the Holocene. We present a new record of late Holocene RSL change from Torgersen Island near Palmer Station in the western Antarctic Peninsula that shows an increase in the rate of relative sea-level fall from 3.0 ± 1.2 mm/yr to 5.1 ± 1.8 mm/yr during the late Holocene. Independent studies of the glacial history of the region provide evidence of ice-sheet changes over similar time scales that may be driving this change. When our RSL records are corrected for sea-surface height changes associated with glacial isostatic adjustment (GIA), the rate of post-0.79 ka land uplift at Torgersen Island, 5.3 ± 1.8 mm/yr, is much higher than the rate of uplift recorded at a nearby GPS site at Palmer Station prior to the Larsen B breakup in 2002 AD (1998-2002 AD; <0.1 mm/yr), but similar to the rates observed after 2002 AD (2002-2013 AD; 6–9 mm/yr). This substantial variation in uplift rates further supports the hypothesis that Holocene RSL rates of change are recording responses to late Holocene and recent changes in local ice loading rather than a post-LGM signal across portions of the Antarctic Peninsula. Thus middle-to-late Holocene RSL data may not be an effective tool for constraining the size of the LGM ice sheet across portions of the Antarctic Peninsula underlain by weaker mantle. In addition, current global-scale GIA models are unable to predict our observed changes in late Holocene RSL. Complexities in Earth structure and neoglacial history need to be taken into consideration in GIA models used for correcting modern satellite-based observations of ice-mass loss

    Onset of Surface-Tension-Driven Benard Convection

    Full text link
    Experiments with shadowgraph visualization reveal a subcritical transition to a hexagonal convection pattern in thin liquid layers that have a free upper surface and are heated from below. The measured critical Marangoni number (84) and observation of hysteresis (3%) agree with theory. In some experiments, imperfect bifurcation is observed and is attributed to deterministic forcing caused in part by the lateral boundaries in the experiment.Comment: 4 pages. The RevTeX file has a macro allowing various styles. The appropriate style is "mypprint" which is the defaul

    Evaporative sodium salt crust development and its wind tunnel derived transport dynamics under variable climatic conditions

    Get PDF
    Playas (or ephemeral lakes) can be significant sources of dust, but they are typically covered by salt crusts of variable mineralogy and these introduce uncertainty into dust emission predictions. Despite the importance of crust mineralogy to emission potential, little is known about (i) the effect of short-term changes in temperature and relative humidity on the erodibility of these crusts, and (ii) the influence of crust degradation and mineralogy on wind speed threshold for dust emission. Our understanding of systems where emission is not driven by impacts from saltators is particularly poor. This paper describes a wind tunnel study in which dust emission in the absence of saltating particles was measured for a suite of climatic conditions and salt crust types commonly found on Sua Pan, Botswana. The crusts were found to be non-emissive under climate conditions characteristic of dawn and early morning, as compared to hot and dry daytime conditions when the wind speed threshold for dust emission appears to be highly variable, depending upon salt crust physicochemistry. Significantly, sodium sulphate rich crusts were found to be more emissive than crusts formed from sodium chloride, while degraded versions of both crusts had a lower emission threshold than fresh, continuous crusts. The results from this study are in agreement with in-situ field measurements and confirm that dust emission from salt crusted surfaces can occur without saltation, although the vertical fluxes are orders of magnitude lower (∼10 μg/m/s) than for aeolian systems where entrainment is driven by particle impact

    Nonlinear thermal instability in a horizontal porous layer with an internal heat source and mass flow

    Get PDF
    © 2016, Springer-Verlag Wien. Linear and nonlinear stability analyses of Hadley–Prats flow in a horizontal fluid-saturated porous medium with a heat source are performed. The results indicate that, in the linear case, an increase in the horizontal thermal Rayleigh number is stabilizing for both positive and negative values of mass flow. In the nonlinear case, a destabilizing effect is identified at higher mass flow rates. An increase in the heat source has a destabilizing effect. Qualitative changes appear in Rz as the mass flow moves from negative to positive for different internal heat sources

    Effects of temperature-dependent viscosity variation on entropy generation, heat and fluid flow through a porous-saturated duct of rectangular cross-section

    Get PDF
    Effect of temperature-dependent viscosity on fully developed forced convection in a duct of rectangular cross-section occupied by a fluid-saturated porous medium is investigated analytically. The Darcy flow model is applied and the viscosity-temperature relation is assumed to be an inverse-linear one. The case of uniform heat flux on the walls, i.e. the H boundary condition in the terminology of Kays and Crawford, is treated. For the case of a fluid whose viscosity decreases with temperature, it is found that the effect of the variation is to increase the Nusselt number for heated walls. Having found the velocity and the temperature distribution, the second law of thermodynamics is invoked to find the local and average entropy generation rate. Expressions for the entropy generation rate, the Bejan number, the heat transfer irreversibility, and the fluid flow irreversibility are presented in terms of the Brinkman number, the Péclet number, the viscosity variation number, the dimensionless wall heat flux, and the aspect ratio (width to height ratio). These expressions let a parametric study of the problem based on which it is observed that the entropy generated due to flow in a duct of square cross-section is more than those of rectangular counterparts while increasing the aspect ratio decreases the entropy generation rate similar to what previously reported for the clear flow case

    Plants lacking the main light-harvesting complex retain photosystem II macro-organization

    Get PDF
    Photosystem II (PSII) is a key component of photosynthesis, the process of converting sunlight into the chemical energy of life. In plant cells, it forms a unique oligomeric macrostructure in membranes of the chloroplasts. Several light-harvesting antenna complexes are organized precisely in the PSII macrostructure—the major trimeric complexes (LHCII) that bind 70% of PSII chlorophyll and three minor monomeric complexes—which together form PSII supercomplexes. The antenna complexes are essential for collecting sunlight and regulating photosynthesis, but the relationship between these functions and their molecular architecture is unresolved. Here we report that antisense Arabidopsis plants lacking the proteins that form LHCII trimers have PSII supercomplexes with almost identical abundance and structure to those found in wild-type plants. The place of LHCII is taken by a normally minor and monomeric complex, CP26, which is synthesized in large amounts and organized into trimers. Trimerization is clearly not a specific attribute of LHCII. Our results highlight the importance of the PSII macrostructure: in the absence of one of its main components, another protein is recruited to allow it to assemble and function
    corecore