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Effects of temperatur e-dependent viscosity variation on entropy gener ation, heat, and fluid
flow through a porous-satur ated duct of rectangular cross-section
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ABSTRACT

Effect of temperature-dependent viscosity on fulgveloped forced convection in a duct of
rectangular cross-section occupied by a fluid-séuat porous medium is investigated analytically.
The Darcy flow model is applied and the viscoségaperature relation is assumed to be an
inverse-linear one. The case of uniform heat flaxtlee walls, i.e. thél boundary condition in
the terminology of Kays and Crawford [1], is trehtéor the case of a fluid whose viscosity
decreases with temperature, it is found that tifiecebf the variation is to increase the Nusselt
number for heated walls. Having found the veloeityl the temperature distribution, the second
law of thermodynamics is invoked to find the locaid average entropy generation rate.
Expressions for the entropy generation rate, thearBaumber, the heat transfer irreversibility,
and the fluid flow irreversibility are presented terms of the Brinkman number, the Péclet
number, the viscosity variation number, the dimenigiss wall heat flux, and the aspect ratio
(width to height ratio). These expressions let mpeetric study of the problem based on which it
is observed that the entropy generated due to iflosvduct of square cross-section is more than
those of rectangular counterparts while increasing aspect ratio decreases the entropy
generation rate similar to what previously repofftadhe clear flow case [2].
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Nomenclature
aspect ratio
A coefficient defined by Eq. (17)
Be Bejan number defined by Eq. (32)
Br Brinkman number defined by Eq. (29)

Cp specific heat at constant pressure

Dy hydraulic diameter

D, coefficient defined by Eq. (14)
Negative of the applied pressure gradient
duct height

G

H

k thermal conductivity
K permeability

m coefficient defined by Eq. (14)
N viscosity variation number

Ner  fluid friction irreversibility
Nyr heat transfer irreversibility

Ns dimensionless entropy generation number definelfdy(31)
Nu Nusselt number defined by Eq. (20)

P? viscosity variation parameter defined by Eq. (11)

Pe Péclet number defined by Eq. (27-a)

dimensionless wall heat flux by Eq. (27-b)

q" wall heat flux
R dimensionless parameter defined by Eq. (10)

S,,S;  series defined by Eq. (19-b,c)
S entropy generation rate per unit volume

T* temperature

Tw wall temperature

bulk mean temperature
u* filtration velocity

u mean velocity



a normalized velocityy/ u
X,¥,z dimensionless coordinates

x*,y*,z* Cartesian coordinates

Greek symbols
—_ *
6 kT
q'H

7 fluid viscosity

A Eigenvalues of the problem

n

P fluid density
Subscripts
cp constant property

w wall



1. INTRODUCTION
Because of applications to the cooling of electaguipment there has been in recent years an
increased interest in forced convection in chanmeld ducts filled with porous media. A
substantial amount of literature on this topic vaikble (see, for example, the surveys in Nield
and Bejan [3], Lauriat and Ghafir [4] and, for gaslork, Haji-Sheikh and Vafai [5]). For circular
ducts or parallel plate channels the simplicitytloé geometry allows analytical solutions of
closed form. Analytical solutions are useful fomblemark checks on numerical computations.
They are also useful for parametric studies whiamgee number of parameters are involved. Thus
the question naturally arises as to whether amallysiolutions for ducts of other cross-sections are
possible.
One way to handle the differential equation problerto use the method of weighted residuals.
This method was exploited by Haji-Sheikh and V§&iin their study of thermally developing
convection (the Graetz problem) in ducts of variskigpes, including elliptical ones. This method
is especially convenient when the boundary conaiti@are homogeneous, as in the forced
convection problem with uniform temperature imposedthe walls. For the Graetz problem it
has the additional advantage that in conjunctiath wiandard computing packages it allows the
computation of all the required eigenvalues atgmeather than having to get them one at a time.
As a pioneering analytical work, Haji-Sheikh [6] shapplied a Fourier series method to
investigate forced convection in a duct of rectdagaross-section based on the Brinkman flow
model and showed that the Nusselt number increasastonically with the aspect ratio. Implied
in his work were high Prandtl number and constaoperty suggestion as well as negligible axial
conduction and viscous dissipation. Similar resulese reported by Hooman and Merrikh [7]
where the authors also reported the friction fastnsus the porous media shape factor. Haji-
Sheikh et al. [8] have applied a solution that ueesGreen’s function to investigate the thermally
developing forced convection considering both #wghermal and isoflux boundary conditions.
Regarding to ducts of arbitrary cross-section, Haorf®-10] has reported closed form solutions
for the fully developed temperature distributionrdaime Nusselt number as well as the local
entropy generation rate by applying the Darcy maomarequation for flow in a duct of elliptical
cross-section. It was found that heat transferoisdaction-dominated as a result of very slow
(creeping) velocities in such low porosity mediaow¢ver, when the fluid viscosity is a
temperature-dependent one the problem becomesaonmglicated and one can no longer obtain
such simple expressions for the temperature prafilé the Nusselt number even for ducts of

circular tube cross-section or parallel plate clehres noted by Hooman [11].



Being highly viscous in nature, for most fluid afgineering application the viscosity is strongly
dependent on the temperature; while the thermdiigifity remains relatively constant. For
example, the viscosity of glycerin has a threefdtrease in magnitude for a°COrise in
temperature [12]. This trend is not only observedtch viscous liquids but also in other liquids
such as water; where the viscosity of the wateradeses by about 240 percent when temperature
increases from @ to 50C, as reported by Ling and Dybbs [13]. As a resthig constant
property solutions most often given in the literatneed to be modified. Viscosity variation with
temperature in case of fluids clear of solid malenias the subject of many studies so far and a
complete literature survey may be found in [1].

On the other hand, the groundbreaking work by BEjdhwas an initiation of entropy generation
analysis for the constant viscosity case wherstafirecently-published relevant articles may be
found in [2]. Having considered the two problemadianeously, effects of variable viscosity on
entropy generation have been investigated by Jabirand Al-Zahranah and Yilbas [16] for the
clear flow case. However, the similar problem inrqus medium case has not been yet
considered in spite of the ever-increasing useoofys materials in industrial application.

Until recently, the majority of the work done tov@stigate the effects of temperature-dependent
viscosity in forced convection in porous mediuntinigited to the first law analysis based on the
Darcy model by Ling and Dybbs [13], Nield et al7]1and Hooman [18] and the Hazen-Dupuit-
Darcy model [19-22] for flow in a parallel platearinel. On the other hand, several articles (a
complete list of them may be found in [23] and lboevity the list is not repeated here) dealt with
the second law analysis for flow in a porous medivnere none of them considered the effects
of property variation. The aim of this paper isctinsider the effects of temperature-dependent
viscosity variation on flow, thermal and entropyngeation characteristic inside a porous

saturated duct of rectangular cross-section.

2. ANALYSIS
2.1 Heat and Fluid Flow
Fully developed forced convection in a rectangudact occupied by a porous medium is
considered as illustrated by figure 1. It is asstittat the Péclet number is sufficiently large for

the longitudinal conduction (that in tilx&-direction) to be neglected.
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Figure 1 Definition sketch.

The Darcy momentum equation is (the flow is inxhelirection)
_Ke
ﬂ 1

In the above equatioK is the permeability is the negative of the applied pressure gradient,

u*

(1)

and 4 is the fluid viscosity related to the fluid visctysat wall temperature/,, ) by an inverse-

linear model Assume the viscosity-temperature relation to biksws

1 1 ou (T*-T,)
-2 - w 2
U /JW( oT*™ ) @

Applying the above model for the viscosity variatiwith temperature is justified when one

observes that most of the fluids used in porousngiubearings and similar devices (SAE oils,
PAQOs, etc), together with water and alcohol, havec#procal viscosity closely fitted by a linear
function of temperature within a limited range efrperature, of the order of tens of degrees C
[22].

To be able to compare the results with those iritbeature for parallel plate channel a viscosity

variation number, similar to [17], is defined as

ou
S Ho'
N =0T ™ Ha (3)
4,k

wherek is the thermal conductivity" is the wall heat fluxT,, is the wall temperature, afid is
the temperature.

Now one rearranges the viscosity-temperature ogldt find that
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This leads to following form for the Darcy momentequation

u =K (1——(T* T )] 5)
Hy

With thermal conduction in the -directions neglected, the thermal energy equasion

LOT* kK (0°T* 0°T*
2 T2 |- (6)

ax* oCo | oy*®  0z*
Here pis the density an@s is the specific heat at constant pressure oflthe. f
The first law of thermodynamics leads to
oT* " a+l

L)
(604 pcHU\ a
Applying equations (5-7), one finds that
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In dimensionless form one writes the energy equa®
2
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where the foIIowing dimensionless variables arengef
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For a fluid whose viscosity decreases with tempeeaflike most liquids) the viscosity variation

number should be a negative one so that one enzgisasie point by defining

2 N
=—— 11
p R (11)
The appropriate boundary conditions are
=0 aty=+1 and at=z=a (12)

The well known eigenfunction expansion approacids$eto the following solution for the

dimensionless temperature

> coshmz
6= nZD [1 coshma} codA.y) (13)

where



m= [pz +/1r21]1/2,

_1q\n-1
D, =%, (14a-b-c)
A, Rm
) = (2n—1)71_
2
Having found the temperature distribution one fitttss mean velocity as
tanhma
8(a+1) - (1 ma
e L
— GK a n=1 AI"I m
U= (15)
M 2
and the normalized velocity is found to be
~_u*
i=—=A(1+N8), (16)
u
where
A= 2 a7
8la+tl N &
1+\/1+ (a+1) > 21 2{1— tanhma}
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. . 1 a
One remembers thatis related tdR as one can writA = ———.
Ra+1
The dimensionless mixing cup temperature definethbyollowing integral
aprl .
j j Qidydz
g, = f0 - (18)
a
is found to be
Hb =5 +Ss, (19-a)
wheres; ands, are
{1— tanhma}
2AL ma
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Having found the dimensionless mixing cup tempeeggtane readily obtairdu as
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HereDy, is the hydraulic diameter, here given by [7]
a
D, =4H —. 21
W EAH— (21)
In particular from equations (19-21) one obtaires Musselt number as
2
Nu = (i) 2 L . (22)
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© ma at+le 2ma 2
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It is also worth noting that thé\=%i+1 relation is also adopted in driving the above
a

expression for the Nusselt number.

In the limit asa tends to infinity (parallel plate channel) one nems the analytical solutions
corresponding to both constant and the temperatependent viscosity case. Nstends to zero
(the constant property case) one observes thattiequé22) results inNu=12 which is in
complete agreement with the known results of theeypflow model. Simplifying equation (22),

based on perturbation techniques for smklbne obtaingju :12(1—21_':j that is in complete

agreement with [17] where the mathematical detaiés neglected for brevity. The reader may
note that Nield et al. [17] have defined Nu in terof the channel width but here Nu is defined in
terms of the hydraulic diameter so that this Ntwige greater than that of [17]. One also notes
that the results are intentionally truncated toc&hbe solution within a finite range of error bgin
O(N?). In fact equation (22) leads to a Nusselt nunti®ng different from the aforementioned
value provided that one invoked more terms of #rés in equation (22). A detailed verification
of the present work is presented in table 1 whaeeaan observe that the results of this study and
those reported by Haji-Sheikh [6] are the same iwithree significant figures. One also notes
that one should not expect that the result bedaheedor the model applied in [6] is the Brinkman

flow model and the limiting results of his study aaken for comparison purposes.

Table 1 Comparison between present Nusselt numgrand those of [6] for constant property
case
a Nu (Present Study) Haji-Sheikh (2005




7.1131 7.1136

4 9.1159 9.1165

10.2917 10.292

10 10.5838 10.584

100 11.8375 11.838
00 12 12

2.2 Entropy Generation
It is known that entropy is generated through haat fluid flow and the amount of entropy
generation per unit volume may be found in termbest transfer irreversibilityNyr) and fluid

friction irreversibility (Ner) as follows
Sgen = Nipm + N (23)

whereNyr; may be found as

* * * 2 * 2 2
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and alsdNgr may be obtained as

_ u*?
=~ 25
FFI T * K ( )
In terms of dimensionless variabldsy becomes
(a+lj2 00\ (aejz
— T 4 = | +| =
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where the Péclet numbéte, and a dimensionless wall heat flux are defined as
Hu
Pe= 'OCPT
27-a,b
T, K ( )
q"H *
For dimensionleshlsr one obtains
k (1+N8)
N.., =oBr ——+*, 28
R0 H 2 (q —9) ( )

with the Brinkman numbeBr, defined as
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gr=C KH™ (29)
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In dimensionless form the entropy generation nunitgibecomes
ERGEE)
H2 . aPe oy 0z (1+N8)
s— Sgen = + qBr 7 A\ (30)
k (a-6)° (a-6)

In particular from equations (12-14) the entropypg@tion becomes
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One also obtains the Bejan number, the ratid.gf to the total entropy generation rate, as

o G =)

=1 n=1

(a+1j [ZD/\{ COS::ZH}Sin(/‘”y)jZ-F(éDnn(f:](S)iSr;":]Tr]’;ZCOiAny)j

Ng =

+qBr

(32)

Be=|1+qgBr

2

aPe

For the case of negligibler, i.e.Br=0, the Bejan number tends to unity and one verifiat the
only means of entropy generationNgy. According to Bejan [24] one must considéss in
entropy generation analysis even if one has alreadjected the viscous dissipation term in the

thermal energy equation which is the present case.

3. RESULTSAND DISCUSSION
In this problem one can apply the closed form $ohst to show the velocity, isotherms, axgl
throughout the flow region, but in the interestbmvity we just present average valuedlgand
Nu.
Fig. 2 showd\s divided by that of constant property case veReifor some values dil (a=1).
The Péclet number affects the entropy generatientihgough the axial (longitudinal) temperature
gradient inNyp,. Observe that increasinge decreasedNs but the decline is not that severe

particularly wherPe changes from 5 to 10.



Being linearly relevant toNgr and consequently, the entropy generation rategise rin Br
increased\s values as illustrated in Fig. 3. It is also unt®wd that viscosity decrease results in a

reduction in entropy generation rate comparedeéatinstant property case, as expected.
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Figure 2 The dimensionless average entropy gepnearatimber divided by that of constant

property case versi® for some values dfl (Br=1, =1, anda=1)

1
0.95F
b Br=1
09F - — — - Br=10
085
D85
2 r
]
Zos|
)
z
075
07F
TN R | I R 1
0655 0.2 0.4 0.6 0.8 1

Figure 3 The dimensionless average entropy geoaratimber divided by that of constant

property case versiéfor some values dr (a=1, g=1, andPe=1)
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Figure 4 Dimensionless entropy generation numbeded by that of constant property

case versus the aspect ratio for some values oighesity variation numbePg=1, g=1,

andBr=10).
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Figure 5 The Nusselt number divided by that of tamisproperty case versus the aspect

ratio for some values of the viscosity variatiomtoer.



Figure 6 Dimensionless entropy generation numbeded by that of constant property

case versus the viscosity variation number for seahges ofg.
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Figure 7 Dimensionless entropy generation verseiglimensionless wall heat fluxfor some

values of the viscosity variation number

Fig. 4 presentdls versus the aspect ratio for some values of thensgity variation number. It is
concluded that the constant property case is agsocivith the maximum entropy generation rate
compared to variable viscosity counterparts. Basedhis figure one concludes that for the
square cross-sectidis reaches it's maximum while moving to parallel plahannel the entropy
generation decreases.

Fig. 5 shows the Nusselt number divided by the t@oriroperty counterpart, i.8u/Nug, versus

the aspect ratio. It is clear that increasingdahalue, decreases the variable property effects on

Nu/Nug,. It is also interesting that with>6, the Nusselt ratio foN=-0.5 is higher than those of



N=-0.9 and\=-0.1. However, with smaller values afmoving fromN=-0.1 to -0.9 increases the
ratio.

Another influential parameter is the dimensionksd heat fluxg. Increasingy will decrease the
entropy generation but as shown in Fig. 6, whenvtbeosity changes with the temperature, the
ratio of Ns divided byNg, increases with an increase gn Preventing disingenuous, Fig. 7 is

presented to emphasis on the fact that increapmitj decrease the entropy generation number.
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