25 research outputs found

    X chromosomal abnormalities in basal-like human breast cancer

    Get PDF
    SummarySporadic basal-like cancers (BLC) are a distinct class of human breast cancers that are phenotypically similar to BRCA1-associated cancers. Like BRCA1-deficient tumors, most BLC lack markers of a normal inactive X chromosome (Xi). Duplication of the active X chromosome and loss of Xi characterized almost half of BLC cases tested. Others contained biparental but nonheterochromatinized X chromosomes or gains of X chromosomal DNA. These abnormalities did not lead to a global increase in X chromosome transcription but were associated with overexpression of a small subset of X chromosomal genes. Other, equally aneuploid, but non-BLC rarely displayed these X chromosome abnormalities. These results suggest that X chromosome abnormalities contribute to the pathogenesis of BLC, both inherited and sporadic

    TERT Promoter Mutations Differently Correlate with the Clinical Outcome of MAPK Inhibitor-Treated Melanoma Patients

    Get PDF
    Resistance is a major challenge in the management of mitogen-activated protein kinase inhibitor (MAPKi)-treated metastatic melanoma. Tumor genetic alterations can cause MAPK pathway reactivation, leading to lack of response and poor outcome. Characterization of the mutational profile in patients with melanoma might be crucial for patient-tailored treatment choices. Mutations in the promoter region of the telomerase reverse transcriptase gene (TERTprom) lead to increased TERT expression and telomerase activity and are frequent in BRAFV600 mutant melanoma. Reportedly, TERTprom, and BRAFV600 mutations cooperate in driving cancer progression and aggressiveness. We evaluated the effect of the TERTprom status on the clinical outcome in 97 MAPKi-treated melanoma patients. We observed that patients with the c.-146C > T mutation showed a significantly worse progression-free survival (PFS) compared to those carrying the c.-124C > T mutation and a two-fold increased risk of progression (median 5.4 vs. 9.5 months; hazard ratio (HR) 1.9; 95% confidence interval (CI) 1.2-3.2; p = 0.013). This trend was also observed for the overall survival (OS); melanoma patients with the c.-146C > T mutation showed a poorer prognosis compared to those with the c.-124C > T mutation (median 13.3 vs. 25.5 months; HR 1.9, 95% CI 1.1-3.3, p = 0.023). Our results disclose a different correlation of the two TERTprom mutations with MAPKi-treated melanoma patient outcome, highlighting a different impact of the pathway blockade

    A likelihood ratio approach for utilizing case-control data in the clinical classification of rare sequence variants:Application to BRCA1 and BRCA2

    Get PDF
    A large number of variants identified through clinical genetic testing in disease susceptibility genes are of uncertain significance (VUS). Following the recommendations of the American College of Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology (AMP), the frequency in case-control datasets (PS4 criterion) can inform their interpretation. We present a novel case-control likelihood ratio-based method that incorporates gene-specific age-related penetrance. We demonstrate the utility of this method in the analysis of simulated and real datasets. In the analysis of simulated data, the likelihood ratio method was more powerful compared to other methods. Likelihood ratios were calculated for a case-control dataset of BRCA1 and BRCA2 variants from the Breast Cancer Association Consortium (BCAC) and compared with logistic regression results. A larger number of variants reached evidence in favor of pathogenicity, and a substantial number of variants had evidence against pathogenicity findings that would not have been reached using other case-control analysis methods. Our novel method provides greater power to classify rare variants compared with classical case-control methods. As an initiative from the ENIGMA Analytical Working Group, we provide user-friendly scripts and preformatted Excel calculators for implementation of the method for rare variants in BRCA1, BRCA2, and other high-risk genes with known penetrance.</p

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification

    Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification

    Get PDF
    Abstract The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared to information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known non-pathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification. This article is protected by copyright. All rights reserved.Peer reviewe

    Collective evidence supports neutrality of BRCA1 V1687I, a novel sequence variant in the conserved THV motif of the first BRCT repeat

    No full text
    Unambiguous classification of BRCA1 and BRCA2 variants of uncertain significance (VUS) is a challenging task that vexes health care providers and has profound implications for patients and their family members. Numerous VUS have been described to date, which await assessment of their functional, hence clinical, impact. As a result of a routine BRCA1/BRCA2 mutational screening, we identified a previously unreported BRCA1 sequence alteration [c.5178G>A (V1687I)] in a patient diagnosed with early onset triple negative breast cancer. The sequence alteration falls in the invariant THV motif of the BRCT domain. To investigate its significance, we applied an integrated approach that, in addition to genetic and histopathological data, included in silico analyses, comparative structural modeling and verification of BRCT-mediated interactions. In line with web-based algorithms that predicted the benign nature of BRCA1 V1687I, the three-dimensional model of the BRCA1 V1687I BRCT domain did not reveal any major structural changes relative to its wild-type counterpart, thus suggesting that BRCA1 V1687I has a negligible impact on both the local architecture and the overall stability of the protein. Consistently, the BRCA1 V1687I protein was properly expressed and localized to the nucleus, and it was still capable of binding three BRCT-interacting, DNA damage response, and repair partner proteins, namely BRIP1/FANCJ, CtIP, and Abraxas. Our collected evidence suggests that, although occurring in a highly conserved region, the BRCA1 V1687I variant is likely a benign sequence alteration

    Multimodal assessment of protein functional deficiency supports pathogenicity of BRCA1 p.V1688del

    No full text
    Unequivocal discrimination between neutral variants and deleterious mutations is crucial for appropriate counseling of individuals with a BRCA1 or BRCA2 sequence change. An increasing number of variants of uncertain significance (VUS) are being identified, the unclassified biological effect of which poses clinical concerns. A multifactorial likelihood-based approach recently suggested disease causality for BRCA1 p.V1688del, a VUS recurrent in Italian breast/ovarian cancer families. Whether and how this single amino acid deletion in the BRCA1 COOH terminus (BRCT) domain affects the function of the mutant protein (Delta ValBRCA1) has not been elucidated. We undertook comprehensive functional characterization of AValBRCA1, comprising comparative structural modeling, analysis of protein stability and associations, and analysis of DNA repair function. Our model predicted BRCT domain destabilization and folding disruption caused by BRCA1 p.V1688del. Consistently, the recombinant Delta ValBRCA1 was less stable than wild-type BRCA1 and, unlike the latter, failed to associate with BRIP1, CtIP, and Rap80 and to relocalize to sites of DNA damage. Yeast two-hybrid analysis revealed a compromised interaction with FHL2 and KPNA2, which is likely responsible for improper subcellular localization of Delta ValBRCA1. In addition, we found four new breast/ovarian cancer families of Italian ancestry who carried this sequence alteration. These results provide the first evidence of the effect of BRCA1 p.V1688del on protein stability and function, supporting the view that it is a deleterious mutation. Multimodal analyses like ours could advance understanding of tumor suppression by BRCA1 and ultimately contribute to developing efficient strategies for screening and characterization of VUS. [Cancer Res 2009;69(17):7030-7
    corecore