15 research outputs found

    Health systems strengthening: a common classification and framework for investment analysis

    Get PDF
    Significant scale-up of donors' investments in health systems strengthening (HSS), and the increased application of harmonization mechanisms for jointly channelling donor resources in countries, necessitate the development of a common framework for tracking donors' HSS expenditures. Such a framework would make it possible to comparatively analyse donors' contributions to strengthening specific aspects of countries' health systems in multi-donor-supported HSS environments. Four pre-requisite factors are required for developing such a framework: (i) harmonization of conceptual and operational understanding of what constitutes HSS; (ii) development of a common set of criteria to define health expenditures as contributors to HSS; (iii) development of a common HSS classification system; and (iv) harmonization of HSS programmatic and financial data to allow for inter-agency comparative analyses. Building on the analysis of these aspects, the paper proposes a framework for tracking donors' investments in HSS, as a departure point for further discussions aimed at developing a commonly agreed approach. Comparative analysis of financial allocations by the Global Fund to Fight AIDS, Tuberculosis and Malaria and the GAVI Alliance for HSS, as an illustrative example of applying the proposed framework in practice, is also presente

    Maternal morbidity in the first year after childbirth in Mombasa Kenya; a needs assessment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In sub-Saharan Africa, few services specifically address the needs of women in the first year after childbirth. By assessing the health status of women in this period, key interventions to improve maternal health could be identified. There is an underutilised opportunity to include these interventions within the package of services provided for woman-child pairs attending child-health clinics.</p> <p>Methods</p> <p>This needs assessment entailed a cross-sectional survey with 500 women attending a child-health clinic at the provincial hospital in Mombasa, Kenya. A structured questionnaire, clinical examination, and collection of blood, urine, cervical swabs and Pap smear were done. Women's health care needs were compared between the early (four weeks to two months after childbirth), middle (two to six months) and late periods (six to twelve months) since childbirth.</p> <p>Results</p> <p>More than one third of women had an unmet need for contraception (39%, 187/475). Compared with other time intervals, women in the late period had more general health symptoms such as abdominal pain, fever and depression, but fewer urinary or breast problems. Over 50% of women in each period had anaemia (Hb <11 g/l; 265/489), with even higher levels of anaemia in those who had a caesarean section or had not received iron supplementation during pregnancy. Bacterial vaginosis was present in 32% (141/447) of women, while 1% (5/495) had syphilis, 8% (35/454) <it>Trichomonas vaginalis </it>and 11% (54/496) HIV infection.</p> <p>Conclusion</p> <p>Throughout the first year after childbirth, women had high levels of morbidity. Interface with health workers at child health clinics should be used for treatment of anaemia, screening and treatment of reproductive tract infections, and provision of family planning counselling and contraception. Providing these services during visits to child health clinics, which have high coverage both early and late in the year after childbirth, could make an important contribution towards improving women's health.</p

    A chemical survey of exoplanets with ARIEL

    Get PDF
    Thousands of exoplanets have now been discovered with a huge range of masses, sizes and orbits: from rocky Earth-like planets to large gas giants grazing the surface of their host star. However, the essential nature of these exoplanets remains largely mysterious: there is no known, discernible pattern linking the presence, size, or orbital parameters of a planet to the nature of its parent star. We have little idea whether the chemistry of a planet is linked to its formation environment, or whether the type of host star drives the physics and chemistry of the planet’s birth, and evolution. ARIEL was conceived to observe a large number (~1000) of transiting planets for statistical understanding, including gas giants, Neptunes, super-Earths and Earth-size planets around a range of host star types using transit spectroscopy in the 1.25–7.8 ÎŒm spectral range and multiple narrow-band photometry in the optical. ARIEL will focus on warm and hot planets to take advantage of their well-mixed atmospheres which should show minimal condensation and sequestration of high-Z materials compared to their colder Solar System siblings. Said warm and hot atmospheres are expected to be more representative of the planetary bulk composition. Observations of these warm/hot exoplanets, and in particular of their elemental composition (especially C, O, N, S, Si), will allow the understanding of the early stages of planetary and atmospheric formation during the nebular phase and the following few million years. ARIEL will thus provide a representative picture of the chemical nature of the exoplanets and relate this directly to the type and chemical environment of the host star. ARIEL is designed as a dedicated survey mission for combined-light spectroscopy, capable of observing a large and well-defined planet sample within its 4-year mission lifetime. Transit, eclipse and phase-curve spectroscopy methods, whereby the signal from the star and planet are differentiated using knowledge of the planetary ephemerides, allow us to measure atmospheric signals from the planet at levels of 10–100 part per million (ppm) relative to the star and, given the bright nature of targets, also allows more sophisticated techniques, such as eclipse mapping, to give a deeper insight into the nature of the atmosphere. These types of observations require a stable payload and satellite platform with broad, instantaneous wavelength coverage to detect many molecular species, probe the thermal structure, identify clouds and monitor the stellar activity. The wavelength range proposed covers all the expected major atmospheric gases from e.g. H2O, CO2, CH4 NH3, HCN, H2S through to the more exotic metallic compounds, such as TiO, VO, and condensed species. Simulations of ARIEL performance in conducting exoplanet surveys have been performed – using conservative estimates of mission performance and a full model of all significant noise sources in the measurement – using a list of potential ARIEL targets that incorporates the latest available exoplanet statistics. The conclusion at the end of the Phase A study, is that ARIEL – in line with the stated mission objectives – will be able to observe about 1000 exoplanets depending on the details of the adopted survey strategy, thus confirming the feasibility of the main science objectives.Peer reviewedFinal Published versio

    Systemic corticosteroids for the treatment of COVID-19

    No full text
    Background Systemic corticosteroids are used to treat people with COVID-19 because they counter hyper-inflammation. Existing evidence syntheses suggest a slight benefit on mortality. So far, systemic corticosteroids are one of the few treatment options for COVID-19. Nonetheless, size of effect, certainty of the evidence, optimal therapy regimen, and selection of patients who are likely to benefit most are factorsthat remain to be evaluated. Objectives To assess whether systemic corticosteroids are effective and safe in the treatment of people with COVID-19, and to keep up to date with the evolving evidence base using a living systematic review approach. Search methods We searched the Cochrane COVI D-19 Study Register (which includes PubMed, Embase, CENTRAL, ClinicalTrials.gov, WHO ICTRP, and medRxiv), Web of Science (Science Citation Index, Emerging Citation Index), and the WHO COVID-19 Global literature on coronavirus disease to identify completed and ongoing studies to 16 April 2021. Selection criteria We included randomised controlled trials (RCTs) that evaluated systemic corticosteroids for people with COVID-19, irrespective of disease severity, participant age, gender or ethnicity. We included any type or dose of systemic corticosteroids. We included the following comparisons: systemic corticosteroids plus standard care versus standard care (plus/minus placebo), dose comparisons, timing comparisons (early versus late), different types of corticosteroids and systemic corticosteroids versus other active substances. We excluded studies that included populations with other coronavirus diseases severe acute respiratory syndrome or Middle East respiratory syndrome), corticosteroids in combination with other active substances versus standard care, topical or inhaled corticosteroids, and corticosteroids for long-COVID treatment. Data collection and analysis We followed standard Cochrane methodology. To assess the risk of bias in included studies, we used the Cochrane 'Risk of bias' 2 tool for RCTs. We rated the certainty of evidence using the GRADE approach for the following outcomes: all-cause mortality, ventilator-free days, new need for invasive mechanical ventilation, quality of life, serious adverse events, adverse events, and hospital-acquired infections. Main results We included 11 RCTs in 8075 participants, of whom 7041 (87%) originated from high-income countries. A total of 3072 participants were randomised to corticosteroid arms and the majority received dexamethasone (n = 2322). We also identified 42 ongoing studies and 16 studies reported as being completed or terminated in a study registry, but without results yet. Hospitalised individuals with a confirmed or suspected diagnosis of symptomatic COVID-19 Systemic corticosteroids plus standard care versus standard care plus/minus placebo We included 10 RCTs (7989 participants), one of which did not report any of our pre-specified outcomes and thus our analysis included outcome data from nine studies. AN-cause mortality (at longest follow-up available): systemic corticosteroids plus standard care probably reduce all-cause mortality slightly in people with COVID-19 compared to standard care alone (median 28 days: risk difference of 30 in 1000 participants fewer than the control group rate of 275 in 1000 participants; risk ratio (RR) 0.89, 95% confidence interval (CI) 0.80 to 1.00; 9 RCTs, 7930 participants; m oderatecertainty evidence). Ventilator-free days: corticosteroids may increase ventilator-free days (MD 2.6 days more than control group rate of 4 days, 95% CI 0.67 to 4.53; 1 RCT, 299 participants; low-certainty evidence). Ventilator-free days have inherent limitations as a composite endpoint and should be interpreted with caution. New need for invasive ventilation: the evidence is of very low certainty. Because of high risk of bias arising from deaths that occurred before ventilation we are uncertain about the size and direction of the effects. Consequently, we did not perform analysis beyond the presentation of descriptive statistics. Quality of life/neurological outcome: no data were available. Serious adverse events: we included data on two RCTs (678 participants) that evaluated systemic corticosteroids compared to standard care (plus/minus placebo); for adverse events and hospital-acquired infections, we included data on five RCTs (660 participants). Because of high risk of bias, heterogeneous definitions, and underreporting we are uncertain about the size and direction of the effects. Consequently, we did not perform analysis beyond the presentation of descriptive statistics (very low-certainty evidence). Different types, dosages or timing of systemic corticosteroids We identified one study that compared methylprednisolone with dexamethasone. The evidence for mortality and new need for invasive mechanical ventilation is very low certainty due to the small number of participants (n =86). No data were available for the other outcomes. We did not identify comparisons of different dosages or timing. Outpatients with asymptomatic or mild disease Currently, there are no studies published in populations with asymptomatic infection or mild disease. Authors' conclusions Moderate-certainty evidence shows that systemic corticosteroids probably slightly reduce all-cause mortality in people hospitalised because of symptomatic COVID-19. Low-certainty evidence suggests that there may also be a reduction in ventilator-free days. Since we are unable to adjust for the impact of early death on su bsequent endpoints, the findings for ventilation outcomes and harms have limited applicability to inform treatment decisions. Currently, there is no evidence for asymptomatic or mild disease (non-hospitalised participants). There is an urgent need for good-quality evidence for specific subgroups of disease severity, for which we propose level of respiratory support at randomisation. This applies to the comparison or subgroups of different types and doses of corticosteroids, too. Outcomes apart from mortality should be measured and analysed appropriately taking into account confounding through death if applicable. We identified 42 ongoing and 16 completed but not published RCTs in trials registries suggesting possible changes of effect estimates and certainty of the evidence in the future. Most ongoing studies target people who need respiratory support at baseline. With the living approach of this review, we will continue to update our search and include eligible trials and published data
    corecore