43 research outputs found
CYP2E1 genotype and isoniazid-induced hepatotoxicity in patients treated for latent tuberculosis
Objective: To determine whether pharmacogenetic tests such as N-acetyltransferase 2 (NAT2) and cytochrome P4502E1 (CYP2E1) genotyping are useful in identifying patients prone to antituberculosis drug-induced hepatotoxicity in a cosmopolite population. Methods: In a prospective study we genotyped 89 patients treated with isoniazid (INH) for latent tuberculosis. INH-induced hepatitis (INH-H) or elevated liver enzymes including hepatitis (INH-ELE) was diagnosed based on the clinical diagnostic scale (CDS) designed for routine clinical practice. NAT2 genotypes were assessed by fluorescence resonance energy transfer probe after PCR analysis, and CYP2E1 genotypes were determined by PCR with restriction fragment length polymorphism analysis. Results: Twenty-six patients (29%) had INH-ELE, while eight (9%) presented with INH-H leading to INH treatment interruption. We report no significant influence of NAT2 polymorphism, but we did find a significant association between the CYP2E1 *1A/*1A genotype and INH-ELE (OR: 3.4; 95% CI:1.1-12; p=0.02) and a non significant trend for INH-H (OR: 5.9; 95% CI: 0.69-270; p=0.13) compared with other CYP2E1 genotypes. This test for predicting INH-ELE had a positive predictive value (PPV) of 39% (95% CI: 26-54%) and a negative predictive value (NPV) of 84% (95% CI: 69-94%). Conclusion: The genotyping of CYP2E1 polymorphisms may be a useful predictive tool in the common setting of a highly heterogeneous population for predicting isoniazid-induced hepatic toxicity. Larger prospective randomized trials are needed to confirm these result
Combined Use of Mycobacterium tuberculosis-Specific CD4 and CD8 T-Cell Responses Is a Powerful Diagnostic Tool of Active Tuberculosis
Immune-based assays are promising tools to help to formulate diagnosis of active tuberculosis. A multiparameter flow cytometry assay assessing T-cell responses specific to Mycobacterium tuberculosis and the combination of both CD4 and CD8 T-cell responses accurately discriminated between active tuberculosis and latent infectio
Follow-up of the Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA 2) 1991-2003: methods and characterization of participants
Summary.: Objectives: The Swiss Cohort Study on Air Pollution and Lung Diseases in Adults (SAPALDIA) was designed to investigate the health effects from long-term exposure to air pollution. Methods: The health assessment at recruitment (1991) and at the first reassessment (2001-3) consisted of an interview about respiratory health, occupational and other exposures, spirometry, a methacholine bronchial challenge test, end-expiratory carbon monoxide (CO) measurement and measurement for atopy. A bio bank for DNA and blood markers was established. Heart rate variability was measured using a 24-hour ECG (Holter) in a random sample of participants aged 50years and older. Concentrations of nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3) and particulates in ambient air have been monitored in all study areas since 1991. Residential histories collected over the 11year follow-up period coupled with GIS modelling will provide individual long-term air pollutant exposure estimates. Results: Of 9651 participants examined in 1991, 8715 could be traced for the cohort study and 283 died. Basic information about health status was obtained for 8047 individuals (86% of alive persons), 6528 individuals (70%) agreed to the health examination and 5973 subjects (62%) completed the entire protocol. Non-participants in the reassessment were on average younger than participants and more likely to have been smokers and to have reported respiratory symptoms in the first assessment. Average weight had increased by 5.5kg in 11years and 28% of smokers in 1991 had quit by the time of the reassessmen
Development of a Multivariate Prediction Model for Early-Onset Bronchiolitis Obliterans Syndrome and Restrictive Allograft Syndrome in Lung Transplantation.
Chronic lung allograft dysfunction and its main phenotypes, bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS), are major causes of mortality after lung transplantation (LT). RAS and early-onset BOS, developing within 3 years after LT, are associated with particularly inferior clinical outcomes. Prediction models for early-onset BOS and RAS have not been previously described.
LT recipients of the French and Swiss transplant cohorts were eligible for inclusion in the SysCLAD cohort if they were alive with at least 2 years of follow-up but less than 3 years, or if they died or were retransplanted at any time less than 3 years. These patients were assessed for early-onset BOS, RAS, or stable allograft function by an adjudication committee. Baseline characteristics, data on surgery, immunosuppression, and year-1 follow-up were collected. Prediction models for BOS and RAS were developed using multivariate logistic regression and multivariate multinomial analysis.
Among patients fulfilling the eligibility criteria, we identified 149 stable, 51 BOS, and 30 RAS subjects. The best prediction model for early-onset BOS and RAS included the underlying diagnosis, induction treatment, immunosuppression, and year-1 class II donor-specific antibodies (DSAs). Within this model, class II DSAs were associated with BOS and RAS, whereas pre-LT diagnoses of interstitial lung disease and chronic obstructive pulmonary disease were associated with RAS.
Although these findings need further validation, results indicate that specific baseline and year-1 parameters may serve as predictors of BOS or RAS by 3 years post-LT. Their identification may allow intervention or guide risk stratification, aiming for an individualized patient management approach
Cabbage and fermented vegetables : From death rate heterogeneity in countries to candidates for mitigation strategies of severe COVID-19
Large differences in COVID-19 death rates exist between countries and between regions of the same country. Some very low death rate countries such as Eastern Asia, Central Europe, or the Balkans have a common feature of eating large quantities of fermented foods. Although biases exist when examining ecological studies, fermented vegetables or cabbage have been associated with low death rates in European countries. SARS-CoV-2 binds to its receptor, the angiotensin-converting enzyme 2 (ACE2). As a result of SARS-CoV-2 binding, ACE2 downregulation enhances the angiotensin II receptor type 1 (AT(1)R) axis associated with oxidative stress. This leads to insulin resistance as well as lung and endothelial damage, two severe outcomes of COVID-19. The nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is the most potent antioxidant in humans and can block in particular the AT(1)R axis. Cabbage contains precursors of sulforaphane, the most active natural activator of Nrf2. Fermented vegetables contain many lactobacilli, which are also potent Nrf2 activators. Three examples are: kimchi in Korea, westernized foods, and the slum paradox. It is proposed that fermented cabbage is a proof-of-concept of dietary manipulations that may enhance Nrf2-associated antioxidant effects, helpful in mitigating COVID-19 severity.Peer reviewe
Nrf2-interacting nutrients and COVID-19 : time for research to develop adaptation strategies
There are large between- and within-country variations in COVID-19 death rates. Some very low death rate settings such as Eastern Asia, Central Europe, the Balkans and Africa have a common feature of eating large quantities of fermented foods whose intake is associated with the activation of the Nrf2 (Nuclear factor (erythroid-derived 2)-like 2) anti-oxidant transcription factor. There are many Nrf2-interacting nutrients (berberine, curcumin, epigallocatechin gallate, genistein, quercetin, resveratrol, sulforaphane) that all act similarly to reduce insulin resistance, endothelial damage, lung injury and cytokine storm. They also act on the same mechanisms (mTOR: Mammalian target of rapamycin, PPAR gamma:Peroxisome proliferator-activated receptor, NF kappa B: Nuclear factor kappa B, ERK: Extracellular signal-regulated kinases and eIF2 alpha:Elongation initiation factor 2 alpha). They may as a result be important in mitigating the severity of COVID-19, acting through the endoplasmic reticulum stress or ACE-Angiotensin-II-AT(1)R axis (AT(1)R) pathway. Many Nrf2-interacting nutrients are also interacting with TRPA1 and/or TRPV1. Interestingly, geographical areas with very low COVID-19 mortality are those with the lowest prevalence of obesity (Sub-Saharan Africa and Asia). It is tempting to propose that Nrf2-interacting foods and nutrients can re-balance insulin resistance and have a significant effect on COVID-19 severity. It is therefore possible that the intake of these foods may restore an optimal natural balance for the Nrf2 pathway and may be of interest in the mitigation of COVID-19 severity
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
Aerosolized iloprost as a bridge to lung transplantation in a patient with cystic fibrosis and pulmonary hypertension
We describe a patient with cystic fibrosis, end-stage lung disease, and secondary pulmonary hypertension in whom aerosolized iloprost was effective in lowering pulmonary artery pressure and improving functional status, thus proving successful as a bridge to lung transplantation. Inhaled iloprost may be an efficient and selective approach to treat pulmonary hypertension related to end-stage obstructive pulmonary disease