31 research outputs found
Advection and scavenging controls of Pa/Th in the northern NE Atlantic
Over the last 2 decades, significant advances have been made in reconstructing past rates of ocean circulation using sedimentary proxies for the dynamics of abyssal waters. In this study we combine the use of two rate proxies, sortable silt grain size, and sedimentary ²³¹Pa/²³⁰Th, measured on a depth transect of deep-sea sediment cores from the northern NE Atlantic, to investigate ocean circulation changes during the last deglacial. We find that at two deep sites, the core-top ²³¹Pa/²³⁰Th ratios reflect Holocene circulation rates, while during Heinrich Stadial 1, the deglacial ratios peaked as the sortable silt grain size decreased, reflecting a general circulation slowdown. However, the peak ²³¹Pa/²³⁰Th significantly exceeded the production ratio in both cores, indicating that ²³¹Pa/²³⁰Th was only partially controlled by ocean circulation at these sites. This is supported by a record of ²³¹Pa/²³⁰Th from an intermediate water depth site, where values also peaked during Heinrich Stadial 1, but were consistently above the production ratio over the last 24 ka, reflecting high scavenging below productive surface waters. At our study sites, we find that preserved sediment component fluxes cannot be used to distinguish between a scavenging or circulation control, although they are consistent with a circulation influence, since the core at intermediate depth with the highest ²³¹Pa/²³⁰Th recorded the lowest particle fluxes. Reconstruction of advection rate using ²³¹Pa/²³⁰Th in this region is complicated by high productivity, but the data nevertheless contain important information on past deep ocean circulation
Southwest Pacific deep-water carbonate chemistry during the Mid-Pleistocene Transition
After more than 40 years of research, there is still wide disagreement in defining when the Mid-Pleistocene Transition (MPT) occurred, with climate reconstructions ranging from an abrupt versus gradual transition that began as early as 1500 ka and ended as late as 600 ka. Our recent work in the Southwest Pacific (Ocean Drilling Program Site 1123) has provided some evidence for a rapid transition, suggesting that the MPT was initiated by an abrupt increase in global ice volume 900 thousand years ago [1]. This study uses shallow-infaunal benthic foraminifera Uvigerina spp. to disentangle the contributions of deep-water temperature (using Mg/Ca ratios) and ice volume to the oxygen isotopic composition of foraminiferal calcite over the last 1.5 Ma. The resulting sea-level reconstruction across the MPT shows that the critical step in ice-volume variation was associated with the suppression of melting in Marine Isotope Stage (MIS) 23, followed by renewed ice growth in MIS 22 to yield a very large ice sheet with 120 m of sea level lowering.
Here, we built on this work with the aim to investigate further the abrupt event centered on MIS 24 to 22 (the ‘900-ka event’) and try to shed some light on the processes and mechanisms that caused the MPT. Different hypotheses account for the origin of the MPT as a response to long-term ocean cooling, perhaps because of lowering CO2. To better quantify the role of the carbon system during the MPT, we reconstruct past changes in bottom water inorganic carbon chemistry from the trace element (B/Ca) and stable isotopic composition of calcite shells of the infaunal benthic foraminifera Uvigerina spp. from 1100 ka to 350 ka at ODP Site 1123. This site was retrieved from Chatham Rise, east of New Zealand in the Southwest Pacific Ocean (41º47.2’S, 171º 29.9’ W, 3290 m water depth) and lies under the Deep Western Boundary Current (DWBC) that flows into the Pacific Ocean, and is responsible for most of the deep water in that ocean; DWBC strength is directly related to processes occurring around Antarctica. The ratio of boron to calcium (B/Ca) in benthic foraminifer shells has proven to be a reliable indicator of the calcite saturation state of ocean bottom waters. The comparison between benthic foraminifera δ18O and δ13C shows a similar trend at ODP Site 1123, implying a close relationship between these climate and carbon cycle signals, and we use our B/Ca record reconstructed from the same samples to explore the potential processes behind this tight coupling.
These results permit preliminary discussion on the deep-water carbonate saturation state during glacial/interglacial cycles. Deep-water temperatures estimates using Mg/Ca and oxygen isotopic composition of seawater (δ18Osw) are available from Site 1123 for the last 1.5 million years [1] and the phase relationship between the different signals is tentatively assessed for the early/middle Pleistocene, when different patterns of climate variability have been inferred from marine and ice cores records.
[1] Elderfield et al. (2012). Evolution of ocean temperature and ice volume through the Mid Pleistocene Climate Transition. Science, vol. 337, 6095, 704-70
Architecture of North Atlantic contourite drifts modified by transient circulation of the Icelandic mantle plume
Overflow of Northern Component Water, the precursor of North Atlantic Deep Water, appears to have varied during Neogene times. It has been suggested that this variation is moderated by transient behavior of the Icelandic mantle plume, which has influenced North Atlantic bathymetry through time. Thus pathways and intensities of bottom currents that control deposition of contourite drifts could be affected by mantle processes. Here, we present regional seismic reflection profiles that cross sedimentary accumulations (Björn, Gardar, Eirik and Hatton Drifts). Prominent reflections were mapped and calibrated using a combination of boreholes and legacy seismic profiles. Interpreted seismic profiles were used to reconstruct solid sedimentation rates. Björn Drift began to accumulate in late Miocene times. Its average sedimentation rate decreased at ∼2.5 Ma and increased again at ∼0.75 Ma. In contrast, Eirik Drift started to accumulate in early Miocene times. Its average sedimentation rate increased at ∼5.5 Ma and decreased at ∼2.2 Ma. In both cases, there is a good correlation between sedimentation rates, inferred Northern Component Water overflow, and the variation of Icelandic plume temperature independently obtained from the geometry of diachronous V-shaped ridges. Between 5.5 and 2.5 Ma, the plume cooled, which probably caused subsidence of the Greenland-Iceland-Scotland Ridge, allowing drift accumulation to increase. When the plume became hotter at 2.5 Ma, drift accumulation rate fell. We infer that deep-water current strength is modulated by fluctuating dynamic support of the Greenland-Scotland Ridge. Our results highlight the potential link between mantle convective processes and ocean circulationThis work is partly supported by Natural Environment Research Council Grant NE/G007632/1. RPT was supported by the University of Cambridge Girdler Fund and by BP Exploration.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/2015GC00594
A boundary exchange influence on deglacial neodymium isotope records from the deep western Indian Ocean
The use of neodymium (Nd) isotopes to reconstruct past water mass mixing relies upon the quasi-conservative behaviour of this tracer, whereas recent studies in the modern oceans have suggested that boundary exchange, involving the addition of Nd from ocean margin sediments, may be an important process in the Nd cycle. Here we suggest that the relative importance of water mass advection versus boundary exchange can be assessed where the deep western boundary current in the Indian Ocean flows past the Madagascan continental margin; a potential source of highly unradiogenic Nd. Foraminiferal coatings and bulk sediment reductive leachates are used to reconstruct bottom water Nd isotopic composition (εNd) in 8 Holocene age coretops, with excellent agreement between the two methods. These data record spatial variability of ∼4 εNd units along the flow path of Circumpolar Deep Water; εNd≈−8.8 in the deep southern inflow upstream of Madagascar, which evolves towards εNd≈−11.5 offshore northern Madagascar, whereas εNd≈−7.3 where deep water re-circulates in the eastern Mascarene Basin. This variability is attributed to boundary exchange and, together with measurements of detrital sediment εNd, an isotope mass balance suggests a deep water residence time for Nd of ≤400 yr along the Madagascan margin. Considering deglacial changes, a core in the deep inflow upstream of Madagascar records εNd changes that agree with previous reconstructions of the Circumpolar Deep Water composition in the Southern Ocean, consistent with a control by water mass advection and perhaps indicating a longer residence time for Nd in the open ocean away from local sediment inputs. In contrast, sites along the Madagascan margin record offset εNd values and reduced glacial–interglacial variability, underlining the importance of detecting boundary exchange before inferring water mass source changes from Nd isotope records. The extent of Madagascan boundary exchange appears to be unchanged between the Holocene and Late Glacial periods, while a consistent shift towards more radiogenic εNd values at all sites in the Late Glacial compared to the Holocene may represent a muted signal of a change in water mass source or composition
Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene : reflections of East Antarctic Ice Sheet growth
Today the deep western boundary current (DWBC) east of New Zealand is the most important route for deep water entering the Pacific Ocean. Large-scale changes in deep water circulation patterns are thought to have been associated with the development of the East Antarctic Ice Sheet (EAIS) close to the main source of bottom water for the DWBC. Here we reconstruct the changing speed of the southwest Pacific DWBC during the middle Miocene from ∼15.5-12.5 Ma, a period of significant global ice accumulation associated with EAIS growth. Sortable silt mean grain sizes from Ocean Drilling Program Site 1123 reveal variability in the speed of the Pacific inflow on the timescale of the 41 kyr orbital obliquity cycle. Similar orbital period flow changes have recently been demonstrated for the Pleistocene epoch. Collectively, these observations suggest that a strong coupling between changes in the speed of the deep Pacific inflow and high-latitude climate forcing may have been a persistent feature of the global thermohaline circulation system for at least the past 15 Myr. Furthermore, long-term changes in flow speed suggest an intensification of the DWBC under an inferred increase in Southern Component Water production. This occurred at the same time as decreasing Tethyan outflow and major EAIS growth between ∼15.5 and 13.5 Ma. These results provide evidence that a major component of the deep thermohaline circulation was associated with the middle Miocene growth of the EAIS and support the view that this time interval represents an important step in the development of the Neogene icehouse climate
Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate
Geology is the science of how the Earth functions and has evolved and, as such, it can contribute to our understanding of the climate system and how it responds to the addition of carbon dioxide (CO2) to the atmosphere and oceans. Observations from the geological record show that atmospheric CO2 concentrations are now at their highest levels in at least the past 3 million years. Furthermore, the current speed of human-induced CO2 change and warming is nearly without precedent in the entire geological record, with the only known exception being the instantaneous, meteorite-induced event that caused the extinction of non-bird-like dinosaurs 66 million years ago. In short, whilst atmospheric CO2 concentrations have varied dramatically during the geological past due to natural processes, and have often been higher than today, the current rate of CO2 (and therefore temperature) change is unprecedented in almost the entire geological past.
The geological record shows that changes in temperature and greenhouse gas concentrations have direct impacts on sea-level, the hydrological cycle, marine and terrestrial ecosystems, and the acidification and oxygen depletion of the oceans. Important climate phenomena, such as the El Niño–Southern Oscillation (ENSO) and the monsoons, which today affect the socio-economic stability and food and water security of billions of people, have varied markedly with past changes in climate.
Climate reconstructions from around the globe show that climate change is not globally uniform, but tends to exhibit a consistent pattern, with changes at the poles larger than elsewhere. This polar amplification is seen in ancient warmer-than-modern time intervals like the Eocene epoch, about 50 million years ago and, more recently, in the Pliocene, about 3 million years ago. The warmest intervals of the Pliocene saw the disappearance of summer sea ice from the Arctic. The loss of ice cover during the Pliocene was one of the many rapid climate changes observed in the record, which are ften called climate tipping points. The geological record can be used to calculate a quantity called Equilibrium Climate Sensitivity, which is the amount of warming caused by a doubling of atmospheric CO2, after various processes in the climate system have reached equilibrium. Recent estimates suggest that global mean climate warms between 2.6 and 3.9°C per doubling of CO2 once all slow Earth system processes have reached equilibrium.
The geological record provides powerful evidence that atmospheric CO2 concentrations drive climate change, and supports multiple lines of evidence that greenhouse gases emitted by human activities are altering the Earth’s climate. Moreover, the amount of anthropogenic greenhouse gases already in the atmosphere means that Earth is committed to a certain degree of warming. As the Earth’s climate changes due to the burning of fossil fuels and changes in land-use, the planet we live on will experience further changes that will have increasingly drastic effects on human societies. An assessment of past climate changes helps to inform policy decisions regarding future climate change. Earth scientists will also have an important role to play in the delivery of any policies aimed at limiting future climate change
Sedimentary Processes: Sediment Deposition From Suspension ☆
This article deal with factors controlling sediment transport, entry into and maintenance in suspension, followed by aspects of deposition; pelagic flux to the bed, deposition from boundary layers onto flat beds and bedforms. It mainly concerns deposition from water but some of the diagrams in nondimensional form are applicable to air, and some comparisons are made with aerosol deposition from wind
Advection and scavenging controls of Pa/Th in the northern NE Atlantic
Over the last 2 decades, significant advances have been made in reconstructing past rates of ocean circulation using sedimentary proxies for the dynamics of abyssal waters. In this study we combine the use of two rate proxies, sortable silt grain size, and sedimentary 231Pa/230Th, measured on a depth transect of deep-sea sediment cores from the northern NE Atlantic, to investigate ocean circulation changes during the last deglacial. We find that at two deep sites, the core-top 231Pa/230Th ratios reflect Holocene circulation rates, while during Heinrich Stadial 1, the deglacial ratios peaked as the sortable silt grain size decreased, reflecting a general circulation slowdown. However, the peak 231Pa/230Th significantly exceeded the production ratio in both cores, indicating that 231Pa/230Th was only partially controlled by ocean circulation at these sites. This is supported by a record of 231Pa/230Th from an intermediate water depth site, where values also peaked during Heinrich Stadial 1, but were consistently above the production ratio over the last 24 ka, reflecting high scavenging below productive surface waters. At our study sites, we find that preserved sediment component fluxes cannot be used to distinguish between a scavenging or circulation control, although they are consistent with a circulation influence, since the core at intermediate depth with the highest 231Pa/230Th recorded the lowest particle fluxes. Reconstruction of advection rate using 231Pa/230Th in this region is complicated by high productivity, but the data nevertheless contain important information on past deep ocean circulation