16 research outputs found
In vitro and in vivo mRNA delivery using lipid-enveloped pHresponsive polymer nanoparticles
Biodegradable core−shell structured nanoparticles with a poly(β-amino ester) (PBAE) core enveloped by a phospholipid bilayer shell were developed for in vivo mRNA delivery with a view toward delivery of mRNA-based vaccines. The pH-responsive PBAE component was chosen to promote endosome disruption, while the lipid surface layer was selected to minimize toxicity of the polycation core. Messenger RNA was efficiently adsorbed via electrostatic interactions onto the surface of these net positively charged nanoparticles. In vitro, mRNA-loaded particle uptake by dendritic cells led to mRNA delivery into the cytosol with low cytotoxicity, followed by translation of the encoded protein in these difficult-to-transfect cells at a frequency of 30%. Particles loaded with mRNA administered intranasally (i.n.) in mice led to the expression of the reporter protein luciferase in vivo as soon as 6 h after administration, a time point when naked mRNA given i.n. showed no expression. At later time points, luciferase expression was detected in naked mRNA-treated mice, but this group showed a wide variation in levels of transfection, compared to particle-treated mice. This system may thus be promising for noninvasive delivery of mRNA-based vaccines.United States. Dept. of Defense (Institute for Soldier Nanotechnology, contract W911NF-07-D-0004)Ragon Institute of MGH, MIT and HarvardSingapore. Agency for Science, Technology and ResearchHoward Hughes Medical Institute (Investigator
Phylogenetic Dependency Networks: Inferring Patterns of CTL Escape and Codon Covariation in HIV-1 Gag
HIV avoids elimination by cytotoxic T-lymphocytes (CTLs) through the evolution of escape mutations. Although there is mounting evidence that these escape pathways are broadly consistent among individuals with similar human leukocyte antigen (HLA) class I alleles, previous population-based studies have been limited by the inability to simultaneously account for HIV codon covariation, linkage disequilibrium among HLA alleles, and the confounding effects of HIV phylogeny when attempting to identify HLA-associated viral evolution. We have developed a statistical model of evolution, called a phylogenetic dependency network, that accounts for these three sources of confounding and identifies the primary sources of selection pressure acting on each HIV codon. Using synthetic data, we demonstrate the utility of this approach for identifying sites of HLA-mediated selection pressure and codon evolution as well as the deleterious effects of failing to account for all three sources of confounding. We then apply our approach to a large, clinically-derived dataset of Gag p17 and p24 sequences from a multicenter cohort of 1144 HIV-infected individuals from British Columbia, Canada (predominantly HIV-1 clade B) and Durban, South Africa (predominantly HIV-1 clade C). The resulting phylogenetic dependency network is dense, containing 149 associations between HLA alleles and HIV codons and 1386 associations among HIV codons. These associations include the complete reconstruction of several recently defined escape and compensatory mutation pathways and agree with emerging data on patterns of epitope targeting. The phylogenetic dependency network adds to the growing body of literature suggesting that sites of escape, order of escape, and compensatory mutations are largely consistent even across different clades, although we also identify several differences between clades. As recent case studies have demonstrated, understanding both the complexity and the consistency of immune escape has important implications for CTL-based vaccine design. Phylogenetic dependency networks represent a major step toward systematically expanding our understanding of CTL escape to diverse populations and whole viral genes
Discordant Impact of HLA on Viral Replicative Capacity and Disease Progression in Pediatric and Adult HIV Infection
HLA class I polymorphism has a major influence on adult HIV disease progression. An important mechanism mediating this effect is the impact on viral replicative capacity (VRC) of the escape mutations selected in response to HLA-restricted CD8+ T-cell responses. Factors that contribute to slow progression in pediatric HIV infection are less well understood. We here investigate the relationship between VRC and disease progression in pediatric infection, and the effect of HLA on VRC and on disease outcome in adult and pediatric infection. Studying a South African cohort of >350 ART-naïve, HIV-infected children and their mothers, we first observed that pediatric disease progression is significantly correlated with VRC. As expected, VRCs in mother-child pairs were strongly correlated (p = 0.004). The impact of the protective HLA alleles, HLA-B*57, HLA-B*58:01 and HLA-B*81:01, resulted in significantly lower VRCs in adults (p<0.0001), but not in children. Similarly, in adults, but not in children, VRCs were significantly higher in subjects expressing the disease-susceptible alleles HLA-B*18:01/45:01/58:02 (p = 0.007). Irrespective of the subject, VRCs were strongly correlated with the number of Gag CD8+ T-cell escape mutants driven by HLA-B*57/58:01/81:01 present in each virus (p = 0.0002). In contrast to the impact of VRC common to progression in adults and children, the HLA effects on disease outcome, that are substantial in adults, are small and statistically insignificant in infected children. These data further highlight the important role that VRC plays both in adult and pediatric progression, and demonstrate that HLA-independent factors, yet to be fully defined, are predominantly responsible for pediatric non-progression
Molecular causes of a complex disease with high prevalence in Black South Africans (non-insulin dependent diabetes mellitus) and a rarer heterogeneous monogenic disease (hypertrophic cardiomyopathy)
Thesis (M. Sc.) -- University of Stellenbosch, 1999.Full text to be digitised and attached to bibliographic record
Sudden death due to troponin T mutations
Objectives. This study was designed to verify initial observations of the clinical and prognostic features of hypertrophic cardiomyopathy caused by cardiac troponin T gene mutations. Background. The most common cause of sudden cardiac death in the young is hypertrophic cardiomyopathy, which is usually familial. Mutations causing familial hypertrophic cardiomyopathy have been identified in a number of contractile protein genes, raising the possibility of genetic screening for subjects at risk. A previous report suggested that mutations in the cardiac troponin T gene were notable because they were associated with a particularly poor prognosis but only mild hypertrophy. Given the variability of some genotype:phenotype correlations, further analysis of cardiac troponin T mutations has been a priority. Methods. Deoxyribonucleic acid from subjects with hypertrophic cardiomyopathy was screened for cardiac troponin T mutations using a ribonuclease protection assay. Polymerase chain reaction-based detection of a novel mutation was used to genotype members of two affected pedigrees. Gene carriers were examined by echocardiography and electrocardiology, and a family history was obtained. Results. A novel cardiac troponin T gene mutation, arginine 92 tryptophan, was identified in 19 of 48 members of two affected pedigrees. The clinical phenotype was characterized by minimal hypertrophy (mean [± SD] maximal ventricular wall thickness 11.3 ± 5.4 mm) and low disease penetrance by clinical criteria (40% by echocardiography) but a high incidence of sudden cardiac death (mean age 17 ± 9 years). Conclusions. These data support the observation that apparently diverse cardiac troponin T gene mutations produce a consistent disease phenotype. Because this is one of poor prognosis, despite deceptively mild or undetectable hypertrophy, genotyping at this locus may be particularly informative in patient management and counseling.Articl
CD8+ T-cell responses to different HIV proteins have discordant associations with viral load.
Selection of T-cell vaccine antigens for chronic persistent viral infections has been largely empirical. To define the relationship, at the population level, between the specificity of the cellular immune response and viral control for a relevant human pathogen, we performed a comprehensive analysis of the 160 dominant CD8(+) T-cell responses in 578 untreated HIV-infected individuals from KwaZulu-Natal, South Africa. Of the HIV proteins targeted, only Gag-specific responses were associated with lowering viremia. Env-specific and Accessory/Regulatory protein-specific responses were associated with higher viremia. Increasing breadth of Gag-specific responses was associated with decreasing viremia and increasing Env breadth with increasing viremia. Association of the specific CD8(+) T-cell response with low viremia was independent of HLA type and unrelated to epitope sequence conservation. These population-based data, suggesting the existence of both effective immune responses and responses lacking demonstrable biological impact in chronic HIV infection, are of relevance to HIV vaccine design and evaluation
Targeting of a CD8 T cell env epitope presented by HLA-B*5802 is associated with markers of HIV disease progression and lack of selection pressure.
In HIV-infected persons, certain HLA class I alleles are associated with effective control of viremia, while others are associated with rapid disease progression. Among the most divergent clinical outcomes are the relatively good prognosis in HLA-B*5801 expressing persons and poor prognosis with HLA-B*5802. These two alleles differ by only three amino acids in regions involved in HLA-peptide recognition. This study evaluated a cohort of over 1000 persons with chronic HIV clade C virus infection to determine whether clinical outcome differences associated with B*5801 (n = 93) and B*5802 ( n = 259) expression are associated with differences in HIV-1-specific CD8 (+) T cell responses. The overall breadth and magnitude of HIV-1-specific CD8(+) T cell responses were lower in persons expressing B*5802, and epitope presentation by B*5802 contributed significantly less to the overall response as compared to B*5801-restricted CD8 (+) T cells. Moreover, viral load in B*5802-positive persons was higher and CD4 cell counts lower when this allele contributed to the overall CD8 (+) T cell response, which was detected exclusively through a single epitope in Env. In addition, persons heterozygous for B*5802 compared to persons homozygous for other HLA-B alleles had significantly higher viral loads. Viral sequencing revealed strong selection pressure mediated through B*5801-restricted responses but not through B*5802. These data indicate that minor differences in HLA sequence can have a major impact on epitope recognition, and that selective targeting of Env through HLA-B*5802 is at least ineffectual if not actively adverse in the containment of viremia. These results provide experimental evidence that not all epitope-specific responses contribute to immune containment, a better understanding of which is essential to shed light on mechanisms involved in HIV disease progression
Codon optimization of the adenoviral fiber negatively impacts structural protein expression and viral fitness
Codon usage adaptation of lytic viruses to their hosts is determinant for viral fitness. In this work, we analyzed the codon usage of adenoviral proteins by principal component analysis and assessed their codon adaptation to the host. We observed a general clustering of adenoviral proteins according to their function. However, there was a significant variation in the codon preference between the host-interacting fiber protein and the rest of structural late phase proteins, with a non-optimal codon usage of the fiber. To understand the impact of codon bias in the fiber, we optimized the Adenovirus-5 fiber to the codon usage of the hexon structural protein. The optimized fiber displayed increased expression in a non-viral context. However, infection with adenoviruses containing the optimized fiber resulted in decreased expression of the fiber and of wild-type structural proteins. Consequently, this led to a drastic reduction in viral release. The insertion of an exogenous optimized protein as a late gene in the adenovirus with the optimized fiber further interfered with viral fitness. These results highlight the importance of balancing codon usage in viral proteins to adequately exploit cellular resources for efficient infection and open new opportunities to regulate viral fitness for virotherapy and vaccine development.This work was supported by grants from the Spanish Ministry of Economia y Competitividad BIO2014-57716-C2-2-R and receives partial support from the Generalitat de Catalunya SGR14/248. CIBER de Enfermedades Raras is an initiative of the ISCIII. CF group is partially financed by the Instituto de Salud Carlos III (IIS10/00014) and co-financed by Fondo Europeo de Desarrollo Regional (FEDER). We also acknowledge the support of COST Action BM1204 EUPancreas. E.V. was supported by a fellowship from the Gobierno Vasco, Spain
Differential clade-specific HLA-B*3501 association with HIV-1 disease outcome is linked to immunogenicity of a single Gag epitope.
The strongest genetic influence on immune control in HIV-1 infection is the HLA class I genotype. Rapid disease progression in B-clade infection has been linked to HLA-B*35 expression, in particular to the less common HLA-B*3502 and HLA-B*3503 subtypes but also to the most prevalent subtype, HLA-B*3501. In these studies we first demonstrated that whereas HLA-B*3501 is associated with a high viral set point in two further B-clade-infected cohorts, in Japan and Mexico, this association does not hold in two large C-clade-infected African cohorts. We tested the hypothesis that clade-specific differences in HLA associations with disease outcomes may be related to distinct targeting of critical CD8(+) T-cell epitopes. We observed that only one epitope was significantly targeted differentially, namely, the Gag-specific epitope NPPIPVGDIY (NY10, Gag positions 253 to 262) (P = 2 × 10(-5)). In common with two other HLA-B*3501-restricted epitopes, in Gag and Nef, that were not targeted differentially, a response toward NY10 was associated with a significantly lower viral set point. Nonimmunogenicity of NY10 in B-clade-infected subjects derives from the Gag-D260E polymorphism present in ∼90% of B-clade sequences, which critically reduces recognition of the Gag NY10 epitope. These data suggest that in spite of any inherent HLA-linked T-cell receptor repertoire differences that may exist, maximizing the breadth of the Gag-specific CD8(+) T-cell response, by the addition of even a single epitope, may be of overriding importance in achieving immune control of HIV infection. This distinction is of direct relevance to development of vaccines designed to optimize the anti-HIV CD8(+) T-cell response in all individuals, irrespective of HLA type
Influence of Gag-Protease-Mediated Replication Capacity on Disease Progression in Individuals Recently Infected with HIV-1 Subtype Câ–¿
HLA class I-mediated selection of immune escape mutations in functionally important Gag epitopes may partly explain slower disease progression in HIV-1-infected individuals with protective HLA alleles. To investigate the impact of Gag function on disease progression, the replication capacities of viruses encoding Gag-protease from 60 individuals in early HIV-1 subtype C infection were assayed in an HIV-1-inducible green fluorescent protein reporter cell line and were correlated with subsequent disease progression. Replication capacities did not correlate with viral load set points (P = 0.37) but were significantly lower in individuals with below-median viral load set points (P = 0.03), and there was a trend of correlation between lower replication capacities and lower rates of CD4 decline (P = 0.09). Overall, the proportion of host HLA-specific Gag polymorphisms in or adjacent to epitopes was negatively associated with replication capacities (P = 0.04), but host HLA-B-specific polymorphisms were associated with higher viral load set points (P = 0.01). Further, polymorphisms associated with host-specific protective HLA alleles were linked with higher viral load set points (P = 0.03). These data suggest that transmission or early HLA-driven selection of Gag polymorphisms results in reduced early cytotoxic T-lymphocyte (CTL) responses and higher viral load set points. In support of the former, 46% of individuals with nonprotective alleles harbored a Gag polymorphism exclusively associated with a protective HLA allele, indicating a high rate of their transmission in sub-Saharan Africa. Overall, HIV disease progression is likely to be affected by the ability to mount effective Gag CTL responses as well as the replication capacity of the transmitted virus