10,457 research outputs found

    Stellarator bootstrap current and plasma flow velocity at low collisionality

    Get PDF
    The bootstrap current and flow velocity of a low-collisionality stellarator plasma are calculated. As far as possible, the analysis is carried out in a uniform way across all low-collisionality regimes in general stellarator geometry, assuming only that the confinement is good enough that the plasma is approximately in local thermodynamic equilibrium. It is found that conventional expressions for the ion flow speed and bootstrap current in the low-collisionality limit are accurate only in the 1/ν1/\nu-collisionality regime and need to be modified in the ν\sqrt{\nu}-regime. The correction due to finite collisionality is also discussed and is found to scale as ν2/5\nu^{2/5}

    The equation of state of neutron star matter and the symmetry energy

    Full text link
    We present an overview of microscopical calculations of the Equation of State (EOS) of neutron matter performed using Quantum Monte Carlo techniques. We focus to the role of the model of the three-neutron force in the high-density part of the EOS up to a few times the saturation density. We also discuss the interplay between the symmetry energy and the neutron star mass-radius relation. The combination of theoretical models of the EOS with recent neutron stars observations permits us to constrain the value of the symmetry energy and its slope. We show that astrophysical observations are starting to provide important insights into the properties of neutron star matter.Comment: 7 pages, 3 figure, talk given at the 11th International Conference on Nucleus-Nucleus Collisions (NN2012), San Antonio, Texas, USA, May 27-June 1, 2012. To appear in the NN2012 Proceedings in Journal of Physics: Conference Series (JPCS

    Critical strength of attractive central potentials

    Full text link
    We obtain several sequences of necessary and sufficient conditions for the existence of bound states applicable to attractive (purely negative) central potentials. These conditions yields several sequences of upper and lower limits on the critical value, gc()g_{\rm{c}}^{(\ell)}, of the coupling constant (strength), gg, of the potential, V(r)=gv(r)V(r)=-g v(r), for which a first \ell-wave bound state appears, which converges to the exact critical value.Comment: 18 page

    Generic Constraints on the Relativistic Mean-Field and Skyrme-Hartree-Fock Models from the Pure Neutron Matter Equation of State

    Full text link
    We study the nuclear symmetry energy S(rho) and related quantities of nuclear physics and nuclear astrophysics predicted generically by relativistic mean-field (RMF) and Skyrme-Hartree-Fock (SHF) models. We establish a simple prescription for preparing equivalent RMF and SHF parametrizations starting from a minimal set of empirical constraints on symmetric nuclear matter, nuclear binding energy and charge radii, enforcing equivalence of their Lorenz effective masses, and then using the pure neutron matter (PNM) equation of state (EoS) obtained from ab-initio calculations to optimize the pure isovector parameters in the RMF and SHF models. We find the resulting RMF and SHF parametrizations give broadly consistent predictions of the symmetry energy J and its slope parameter L at saturation density within a tight range of <~2 MeV and <~6 MeV respectively, but that clear model dependence shows up in the predictions of higher-order symmetry energy parameters, leading to important differences in (a) the slope of the correlation between J and L from the confidence ellipse, (b) the isospin-dependent part of the incompressibility of nuclear matter K_tau, (c) the symmetry energy at supra-saturation densities, and (d) the predicted neutron star radii. The model dependence can lead to about 1-2 km difference in predictions of the neutron star radius given identical predicted values of J, L and symmetric nuclear matter (SNM) saturation properties. Allowing the full freedom in the effective masses in both models leads to constraints of 30<~J<~31.5 MeV, 35<~L<~60 MeV, -330<~K_tau<~-216 MeV for the RMF model as a whole and 30<~J<~33 MeV, 28<~L<~65 MeV, -420<~K_tau<~-325 MeV for the SHF model as a whole. Notably, given PNM constraints, these results place RMF and SHF models as a whole at odds with some constraints on K_tau inferred from giant monopole resonance and neutron skin experimental results.Comment: 15 pages, 7 figures, 4 table

    Winter Conditions Influence Biological Responses of Migrating Hummingbirds

    Full text link
    Conserving biological diversity given ongoing environmental changes requires the knowledge of how organisms respond biologically to these changes; however, we rarely have this information. This data deficiency can be addressed with coordinated monitoring programs that provide field data across temporal and spatial scales and with process-based models, which provide a method for predicting how species, in particular migrating species that face different conditions across their range, will respond to climate change. We evaluate whether environmental conditions in the wintering grounds of broad-tailed hummingbirds influence physiological and behavioral attributes of their migration. To quantify winter ground conditions, we used operative temperature as a proxy for physiological constraint, and precipitation and the normalized difference vegetation index (NDVI) as surrogates of resource availability. We measured four biological response variables: molt stage, timing of arrival at stopover sites, body mass, and fat. Consistent with our predictions, we found that birds migrating north were in earlier stages of molt and arrived at stopover sites later when NDVI was low. These results indicate that wintering conditions impact the timing and condition of birds as they migrate north. In addition, our results suggest that biologically informed environmental surrogates provide a valuable tool for predicting how climate variability across years influences the animal populations

    Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    Get PDF
    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations

    Modeling quasi-dark states with Temporal Coupled-Mode Theory

    Get PDF
    Coupled resonators are commonly used to achieve tailored spectral responses and allow novel functionalities in a broad range of applications, from optical modulation and filtering in integrated photonic circuits to the study of nonlinear dynamics in arrays of resonators. The Temporal Coupled-Mode Theory (TCMT) provides a simple and general tool that is widely used to model these devices and has proved to yield very good results in many different systems of low-loss, weakly coupled resonators. Relying on TCMT to model coupled resonators might however be misleading in some circumstances due to the lumped-element nature of the model. In this article, we report an important limitation of TCMT related to the prediction of dark states. Studying a coupled system composed of three microring resonators, we demonstrate that TCMT predicts the existence of a dark state that is in disagreement with experimental observations and with the more general results obtained with the Transfer Matrix Method (TMM) and the Finite-Difference Time-Domain (FDTD) simulations. We identify the limitation in the TCMT model to be related to the mechanism of excitation/decay of the supermodes and we propose a correction that effectively reconciles the model with expected results. A comparison with TMM and FDTD allows to verify both steady-state and transient solutions of the modified-TCMT model. The proposed correction is derived from general considerations, energy conservation and the non-resonant power circulating in the system, therefore it provides good insight on how the TCMT model should be modified to eventually account for the same limitation in a different coupled-resonator design. Moreover, our discussion based on coupled microring resonators can be useful for other electromagnetic resonant systems due to the generality and far-reach of the TCMT formalism.Comment: 7 pages, 4 figure
    corecore