39 research outputs found
Combined full shape analysis of BOSS galaxies and eBOSS quasars using an iterative emulator
Standard full-shape clustering analyses in Fourier space rely on a fixed
power spectrum template, defined at the fiducial cosmology used to convert
redshifts into distances, and compress the cosmological information into the
Alcock-Paczynski parameters and the linear growth rate of structure. In this
paper, we propose an analysis method that operates directly in the cosmology
parameter space and varies the power spectrum template accordingly at each
tested point. Predictions for the power spectrum multipoles from the TNS model
are computed at different cosmologies in the framework of .
Applied to the final eBOSS QSO and LRG samples together with the low-z DR12
BOSS galaxy sample, our analysis results in a set of constraints on the
cosmological parameters , , ,
and . To reduce the number of computed models, we construct an iterative
process to sample the likelihood surface, where each iteration consists of a
Gaussian process regression. This method is validated with mocks from N-body
simulations. From the combined analysis of the (e)BOSS data, we obtain the
following constraints: and without any external prior. The eBOSS quasar sample
alone shows a discrepancy compared to the Planck prediction.Comment: 13 pages, 7 figure
The Completed SDSS-IV Extended Baryon Oscillation Spectroscopic Survey: Growth rate of structure measurement from cosmic voids
We present a void clustering analysis in configuration-space using the
completed Sloan Digital Sky Survey IV (SDSS-IV) extended Baryon Oscillation
Spectroscopic Survey (eBOSS) DR16 samples. These samples consist of Luminous
Red Galaxies (LRG) combined with the high redshift tail of the SDSS-III Baryon
Oscillation Spectroscopic Survey (BOSS) DR12 CMASS galaxies (called as
LRG+CMASS sample), Emission Line Galaxies (ELG) and quasars (QSO). We build
void catalogues from the three eBOSS DR16 samples using a ZOBOV-based
algorithm, providing 2,814 voids, 1,801 voids and 4,347 voids in the LRG+CMASS,
ELG and QSO samples, respectively, spanning the redshift range . We
measure the redshift space distortions (RSD) around voids using the anisotropic
void-galaxy cross-correlation function and we extract the distortion parameter
. We test the methodology on realistic simulations before applying it to
the data, and we investigate all our systematic errors on these mocks. We find
, and , for
the LRG+CMASS, ELG and QSO sample, respectively. The quoted errors include
systematic and statistical contributions. In order to convert our measurements
in terms of the growth rate , we use consensus values of linear bias
from the eBOSS DR16 companion papers~\citep{eBOSScosmo}, resulting in the
following constraints: ,
and . Our
measurements are consistent with other measurements from eBOSS DR16 using
conventional clustering techniques.Comment: 17 pages, 8 figure
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey : pairwise-inverse probability and angular correction for fibre collisions in clustering measurements
HJS is supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0014329. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah. This project has received funding from the European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation programme (grant agreement No 693024).The completed extended Baryon Oscillation Spectroscopic Survey (eBOSS) catalogues contain redshifts of 344â080 quasars at 0.8 < z < 2.2, 174â816 luminous red galaxies between 0.6 < z < 1.0, and 173â736 emission-line galaxies over 0.6 < z < 1.1 in order to constrain the expansion history of the Universe and the growth rate of structure through clustering measurements. Mechanical limitations of the fibre-fed spectrograph on the Sloan telescope prevent two fibres being placed closer than 62 arcsec in a single pass of the instrument. These âfibre collisionsâ strongly correlate with the intrinsic clustering of targets and can bias measurements of the two-point correlation function resulting in a systematic error on the inferred values of the cosmological parameters. We combine the new techniques of pairwise-inverse probability and the angular upweighting (PIP+ANG) to correct the clustering measurements for the effect of fibre collisions. Using mock catalogues, we show that our corrections provide unbiased measurements, within data precision, of both the projected wp(rp) and the redshift-space multipole Ο(â = 0, 2, 4)(s) correlation functions down to 0.1hâ1Mpcâ , regardless of the tracer type. We apply the corrections to the eBOSS DR16 catalogues. We find that, on scales sâł20hâ1Mpcsâł20hâ1Mpc for Οâ, as used to make baryon acoustic oscillation and large-scale redshift-space distortion measurements, approximate methods such as nearest-neighbour upweighting are sufficiently accurate given the statistical errors of the data. Using the PIP method, for the first time for a spectroscopic program of the Sloan Digital Sky Survey, we are able to successfully access the one-halo term in the clustering measurements down to âŒ0.1hâ1Mpc scales. Our results will therefore allow studies that use the small-scale clustering to strengthen the constraints on both cosmological parameters and the halo occupation distribution models.Publisher PDFPeer reviewe
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: Large-scale structure catalogues for cosmological analysis
We present large-scale structure catalogues from the completed extended Baryon Oscillation Spectroscopic Survey (eBOSS). Derived from Sloan Digital Sky Survey (SDSS) IV Data Release 16 (DR16), these catalogues provide the data samples, corrected for observational systematics, and random positions sampling the survey selection function. Combined, they allow large-scale clustering measurements suitable for testing cosmological models. We describe the methods used to create these catalogues for the eBOSS DR16 Luminous Red Galaxy (LRG) and Quasar samples. The quasar catalogue contains 343â708 redshifts with 0.8 1000âkmâsâ1). For quasars, these rates are 95 and 2 per cent (with Îz > 3000âkmâsâ1). We apply corrections for trends between the number densities of our samples and the properties of the imaging and spectroscopic data. For example, the quasar catalogue obtains a Ï2/DoF = 776/10 for a null test against imaging depth before corrections and a Ï2/DoF= 6/8 after. The catalogues, combined with careful consideration of the details of their construction found here-in, allow companion papers to present cosmological results with negligible impact from observational systematic uncertainties
The Completed SDSS-IV extended Baryon Oscillation Spectroscopic Survey: measurement of the BAO and growth rate of structure of the luminous red galaxy sample from the anisotropic power spectrum between redshifts 0.6 and 1.0
We analyse the clustering of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey Data Release 16 luminous red galaxy sample (DR16 eBOSS LRG) in combination with the high redshift tail of the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12 BOSS CMASS). We measure the redshift space distortions (RSD) and also extract the longitudinal and transverse baryonic acoustic oscillation (BAO) scale from the anisotropic power spectrum signal inferred from 377â458 galaxies between redshifts 0.6 and 1.0, with the effective redshift of zeff = 0.698 and effective comoving volume of 2.72Gpc3â . After applying reconstruction, we measure the BAO scale and infer DH(zeff)/rdrag = 19.30 ± 0.56 and DM(zeff)/rdrag = 17.86 ± 0.37. When we perform an RSD analysis on the pre-reconstructed catalogue on the monopole, quadrupole, and hexadecapole we find, DH(zeff)/rdrag = 20.18 ± 0.78, DM(zeff)/rdrag = 17.49 ± 0.52 and fÏ8(zeff) = 0.454 ± 0.046. We combine both sets of results along with the measurements in configuration space and report the following consensus values: DH(zeff)/rdrag = 19.77 ± 0.47, DM(zeff)/rdrag = 17.65 ± 0.30 and fÏ8(zeff) = 0.473 ± 0.044, which are in full agreement with the standard ÎCDM and GR predictions. These results represent the most precise measurements within the redshift range 0.6 †z †1.0 and are the culmination of more than 8 yr of SDSS observations.HG-M acknowledges the support from la Caixa Foundation (ID 100010434) which code LCF/BQ/PI18/11630024. RP, SdlT, and SE acknowledge support from the ANR eBOSS project (ANR-16-CE31-0021) of the French National Research Agency. SdlT and SE acknowledge the support of the OCEVU Labex (ANR-11-LABX-0060) and the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the âInvestissements dâAvenirâ French government program managed by the ANR. MV-M and SF are partially supported by Programa de Apoyo a Proyectos de InvestigaciĂłn e InovaciĂłn TeconolĂłgica (PAPITT) no. IA101518, no. IA101619 and Proyecto LANCAD-UNAM-DGTIC-136. GR acknowledges support from the National Research Foundation of Korea (NRF) through Grants No. 2017R1E1A1A01077508 and No. 2020R1A2C1005655 funded by the Korean Ministry of Education, Science and Technology (MoEST), and from the faculty research fund of Sejong University. SA is supported by the European Research Council through the COSFORM Research Grant (#670193). E-MM is supported by the European Research Council (ERC) under the European Unionâs Horizon 2020 research and innovation programme (grant agreement No 693024).Peer reviewe
A História da Alimentação: balizas historiogråficas
Os M. pretenderam traçar um quadro da HistĂłria da Alimentação, nĂŁo como um novo ramo epistemolĂłgico da disciplina, mas como um campo em desenvolvimento de prĂĄticas e atividades especializadas, incluindo pesquisa, formação, publicaçÔes, associaçÔes, encontros acadĂȘmicos, etc. Um breve relato das condiçÔes em que tal campo se assentou faz-se preceder de um panorama dos estudos de alimentação e temas correia tos, em geral, segundo cinco abardagens Ia biolĂłgica, a econĂŽmica, a social, a cultural e a filosĂłfica!, assim como da identificação das contribuiçÔes mais relevantes da Antropologia, Arqueologia, Sociologia e Geografia. A fim de comentar a multiforme e volumosa bibliografia histĂłrica, foi ela organizada segundo critĂ©rios morfolĂłgicos. A seguir, alguns tĂłpicos importantes mereceram tratamento Ă parte: a fome, o alimento e o domĂnio religioso, as descobertas europĂ©ias e a difusĂŁo mundial de alimentos, gosto e gastronomia. O artigo se encerra com um rĂĄpido balanço crĂtico da historiografia brasileira sobre o tema
Cosmological constraints with large spectroscopic survey of quasars of eBOSS/SDSS-IV
Durant ma thĂšse, l'objectif Ă©tait d'Ă©tudier la structuration de l'Ă©chantillon de quasars de eBOSS au travers de son spectre de puissance. D'une part, nous nous sommes focalisĂ©s sur les oscillations acoustiques de baryons pour contraindre DM/rd et DH/rd. D'autre part, nous avons modĂ©lisĂ© la forme complĂšte du spectre de puissance pour ajouter une contrainte sur le taux de croissance des structures fÏ â. Ces modĂšles ont Ă©tĂ© testĂ©s sur des mocks construits Ă partir d'une simulation Ă N-corps. Nous avons testĂ© lâincertitude en redshift particuliĂšre aux quasars dans le cadre de ce extitmock challenge. Nous avons implĂ©mentĂ© un terme de Finger-of-God permettant de prendre en compte ces incertitudes non-gaussiennes. Nous avons testĂ© nos modĂšles sur des mocks dont la cosmologie nous Ă©tait inconnue. Cela a mis en Ă©vidence un dĂ©calage des paramĂštres si notre cosmologie fiducielle est trop Ă©loignĂ©e de la cosmologie rĂ©elle du relevĂ©. Ce dĂ©calage n'est pas significatif pour le relevĂ© de eBOSS mais peut ĂȘtre problĂ©matique pour les futurs relevĂ©s spectroscopiques. Ensuite, testĂ© les effets systĂ©matiques de notre relevĂ© sur des mocks rapides ayant la mĂȘme gĂ©omĂ©trie que les donnĂ©es. Nous avons implĂ©mentĂ© les effets systĂ©matiques observationnels sur ces mocks. Nous avons mis en Ă©vidence un dĂ©calage du spectre de puissance par l'implĂ©mentation des collisions de fibres, nous manquons ~ 40% des paires Ă petite Ă©chelle perpendiculairement Ă la ligne de visĂ©e. Nous l'avons modĂ©lisĂ© dans le spectre de puissance en ajoutant une fonction de sĂ©lection Ă ces Ă©chelles. Pour les deux modĂšles, l'erreur systĂ©matique totale est infĂ©rieure ou Ă©gale Ă 30% de l'erreur statistique pour chacun des paramĂštres, la plus importante part provenant de la modĂ©lisation du spectre. Nous avons combinĂ© notre analyse et l'analyse du mĂȘme catalogue de quasars en espace de configuration, ce qui amĂšne Ă des contraintes de DH/rd = 13.26 ± 0.55 et DM/rd = 30.69 ± 0.80 pour l'analyse BAO uniquement; et DH/rd = 13.23 ± 0.47, DM/rd =30.21 ± 0.79 et fÏ â =0.462 ± 0.045 pour l'analyse de la forme complĂšte du spectre de puissance. Ces mesures sont en accord avec les analyses du CMB; la mesure du taux de croissance linĂ©aire des structures, fÏ â est plus haut de 1.9Ï en comparaison de la valeur de Planck. En utilisant toutes les mesures des analyses de la structuration des galaxies de SDSS, nous apportons d'importantes contraintes des paramĂštres cosmologiques. Ensuite, nous avons cherchĂ© Ă ce que notre analyse de la forme complĂšte du spectre de puissance ne dĂ©pende pas de la cosmologie fiducielle. Nous analysons le spectre de puissance observĂ© Ă l'aide de plusieurs modĂšles avec diffĂ©rents paramĂštres cosmologiques, les paramĂštres informatifs de notre ajustement sont fixĂ©s Ă leur valeur ÎCDM+GR pour ensuite interpoler, Ă l'aide d'un processus gaussien, la nappe de ÏÂČ sur l'espace des paramĂštres cosmologiques pour ajuster ces derniers. Cela permet de ne pas compresser l'information. Ce faisant, nous ajustons l'ensemble des paramĂštres cosmologiques sans a priori provenant de sondes externes comme cela est habituellement fait dans les analyses de la structuration de galaxies. En analysant le relevĂ© de quasars, nous augmentons le dĂ©saccord avec Planck sur l'amplitude des fluctuations de matiĂšre, Ïâ, Ă 3.1Ï. Notre analyse conjointe des relevĂ©s de quasars et de LRG de eBOSS ainsi que du relevĂ© low-z de BOSS est en accord avec l'analyse de Planck. Nous obtenons des contraintes plus fortes sur Ωm qu'avec les analyses standard de SDSS. Cette mĂ©thode pourra ĂȘtre utilisĂ©e dans le cadre des futurs grands relevĂ©s spectroscopiques tel que DESI ou Euclid pour minimiser l'erreur systĂ©matique due au modĂšle tout en amĂ©liorant les contraintes statistiques.During my thesis, the objective was to study the clustering of the sample of eBOSS quasars through its power spectrum. On the one hand, we focused on the acoustic oscillations of baryons to constrain DM/rd et DH/rd. On the other hand, we modelled the full shape of the power spectrum to add a constraint on the growth rate of the structures fÏ â. These models were tested on mocks built from an N-body simulation. We tested the redshift uncertainty specific to quasars as part of this extitmock challenge. We implemented a Finger-of-God term to take into account these non-Gaussian uncertainties. We tested our models on mocks whose cosmology was unknown to us. This highlighted a shift in the parameters if our fiducial cosmology is too far from the real cosmology of the survey. This shift is not significant for eBOSS survey but can be problematic for future spectroscopic surveys. Then, we tested the systematic effects of our survey on fast mocks with the same geometry as the data. We implemented the systematic observational effects on these mocks. We have demonstrated a shift in the power spectrum by the implementation of fibre collisions, we are missing ~ 40% of small scale pairs perpendicular to the line of sight. We model it in the power spectrum by adding a window function to these scales. For both models, the total systematic error is lower than or equal to 30% of the statistical error for each parameter, the largest part coming from spectrum modelling. We combined our analysis and the analysis of the same catalog of quasars in configuration space, which leads to constraints of DH/rd = 13.26 ± 0.55 and DM/rd = 30.69 ± 0.80 for BAO-only analysis; and DH/rd = 13.23 ± 0.47, DM/rd =30.21 ± 0.79 and fÏ â =0.462 ± 0.045 for the analysis of the full shape of the power spectrum. These measurements are in agreement with the analyzes of the CMB; the measurement of the linear growth rate of structures, fÏ â is 1.9Ï higher compared to Planck's value. Using all the measurements from the galaxy clustering analyzes of SDSS, we bring important constraints of cosmological parameters such as the equation of state of l dark energy or the curvature of the universe. Next, we sought to ensure that our analysis of the full shape of the power spectrum did not depend on fiducial cosmology. We analyze the observed power spectrum using several model with different cosmological parameters, the informative parameters of our fit are set to their value ÎCDM+GR and then interpolate, using a Gaussian process, the ÏÂČ map over the space of cosmological parameters to fit the latter. This allows to not compressing the information. In doing so, we adjust the set of cosmological parameters without any prior coming from external probes as is usually done in analyzes of the structuring of galaxies. By analyzing the quasar survey, we increase the disagreement with Planck on the amplitude of the fluctuations of matter, Ïâ, to 3.1Ï. Our combined analysis of eBOSS quasar and LRG surveys, as well as the BOSS low-z surveys, is in agreement with Planck's analysis. We obtain stronger constraints on Ωm than with the standard analyzes of SDSS. This method could be used within the framework of future large spectroscopic surveys such as DESI or Euclid to minimize the systematic error due to the model while improving the statistical constraints
Contraintes cosmologiques avec le grand relevé spectroscopique de quasars de eBOSS/SDSS-IV
During my thesis, the objective was to study the clustering of the sample of eBOSS quasars through its power spectrum. On the one hand, we focused on the acoustic oscillations of baryons to constrain DM/rd et DH/rd. On the other hand, we modelled the full shape of the power spectrum to add a constraint on the growth rate of the structures fÏ â. These models were tested on mocks built from an N-body simulation. We tested the redshift uncertainty specific to quasars as part of this extitmock challenge. We implemented a Finger-of-God term to take into account these non-Gaussian uncertainties. We tested our models on mocks whose cosmology was unknown to us. This highlighted a shift in the parameters if our fiducial cosmology is too far from the real cosmology of the survey. This shift is not significant for eBOSS survey but can be problematic for future spectroscopic surveys. Then, we tested the systematic effects of our survey on fast mocks with the same geometry as the data. We implemented the systematic observational effects on these mocks. We have demonstrated a shift in the power spectrum by the implementation of fibre collisions, we are missing ~ 40% of small scale pairs perpendicular to the line of sight. We model it in the power spectrum by adding a window function to these scales. For both models, the total systematic error is lower than or equal to 30% of the statistical error for each parameter, the largest part coming from spectrum modelling. We combined our analysis and the analysis of the same catalog of quasars in configuration space, which leads to constraints of DH/rd = 13.26 ± 0.55 and DM/rd = 30.69 ± 0.80 for BAO-only analysis; and DH/rd = 13.23 ± 0.47, DM/rd =30.21 ± 0.79 and fÏ â =0.462 ± 0.045 for the analysis of the full shape of the power spectrum. These measurements are in agreement with the analyzes of the CMB; the measurement of the linear growth rate of structures, fÏ â is 1.9Ï higher compared to Planck's value. Using all the measurements from the galaxy clustering analyzes of SDSS, we bring important constraints of cosmological parameters such as the equation of state of l dark energy or the curvature of the universe. Next, we sought to ensure that our analysis of the full shape of the power spectrum did not depend on fiducial cosmology. We analyze the observed power spectrum using several model with different cosmological parameters, the informative parameters of our fit are set to their value ÎCDM+GR and then interpolate, using a Gaussian process, the ÏÂČ map over the space of cosmological parameters to fit the latter. This allows to not compressing the information. In doing so, we adjust the set of cosmological parameters without any prior coming from external probes as is usually done in analyzes of the structuring of galaxies. By analyzing the quasar survey, we increase the disagreement with Planck on the amplitude of the fluctuations of matter, Ïâ, to 3.1Ï. Our combined analysis of eBOSS quasar and LRG surveys, as well as the BOSS low-z surveys, is in agreement with Planck's analysis. We obtain stronger constraints on Ωm than with the standard analyzes of SDSS. This method could be used within the framework of future large spectroscopic surveys such as DESI or Euclid to minimize the systematic error due to the model while improving the statistical constraints.Durant ma thĂšse, l'objectif Ă©tait d'Ă©tudier la structuration de l'Ă©chantillon de quasars de eBOSS au travers de son spectre de puissance. D'une part, nous nous sommes focalisĂ©s sur les oscillations acoustiques de baryons pour contraindre DM/rd et DH/rd. D'autre part, nous avons modĂ©lisĂ© la forme complĂšte du spectre de puissance pour ajouter une contrainte sur le taux de croissance des structures fÏ â. Ces modĂšles ont Ă©tĂ© testĂ©s sur des mocks construits Ă partir d'une simulation Ă N-corps. Nous avons testĂ© lâincertitude en redshift particuliĂšre aux quasars dans le cadre de ce extitmock challenge. Nous avons implĂ©mentĂ© un terme de Finger-of-God permettant de prendre en compte ces incertitudes non-gaussiennes. Nous avons testĂ© nos modĂšles sur des mocks dont la cosmologie nous Ă©tait inconnue. Cela a mis en Ă©vidence un dĂ©calage des paramĂštres si notre cosmologie fiducielle est trop Ă©loignĂ©e de la cosmologie rĂ©elle du relevĂ©. Ce dĂ©calage n'est pas significatif pour le relevĂ© de eBOSS mais peut ĂȘtre problĂ©matique pour les futurs relevĂ©s spectroscopiques. Ensuite, testĂ© les effets systĂ©matiques de notre relevĂ© sur des mocks rapides ayant la mĂȘme gĂ©omĂ©trie que les donnĂ©es. Nous avons implĂ©mentĂ© les effets systĂ©matiques observationnels sur ces mocks. Nous avons mis en Ă©vidence un dĂ©calage du spectre de puissance par l'implĂ©mentation des collisions de fibres, nous manquons ~ 40% des paires Ă petite Ă©chelle perpendiculairement Ă la ligne de visĂ©e. Nous l'avons modĂ©lisĂ© dans le spectre de puissance en ajoutant une fonction de sĂ©lection Ă ces Ă©chelles. Pour les deux modĂšles, l'erreur systĂ©matique totale est infĂ©rieure ou Ă©gale Ă 30% de l'erreur statistique pour chacun des paramĂštres, la plus importante part provenant de la modĂ©lisation du spectre. Nous avons combinĂ© notre analyse et l'analyse du mĂȘme catalogue de quasars en espace de configuration, ce qui amĂšne Ă des contraintes de DH/rd = 13.26 ± 0.55 et DM/rd = 30.69 ± 0.80 pour l'analyse BAO uniquement; et DH/rd = 13.23 ± 0.47, DM/rd =30.21 ± 0.79 et fÏ â =0.462 ± 0.045 pour l'analyse de la forme complĂšte du spectre de puissance. Ces mesures sont en accord avec les analyses du CMB; la mesure du taux de croissance linĂ©aire des structures, fÏ â est plus haut de 1.9Ï en comparaison de la valeur de Planck. En utilisant toutes les mesures des analyses de la structuration des galaxies de SDSS, nous apportons d'importantes contraintes des paramĂštres cosmologiques. Ensuite, nous avons cherchĂ© Ă ce que notre analyse de la forme complĂšte du spectre de puissance ne dĂ©pende pas de la cosmologie fiducielle. Nous analysons le spectre de puissance observĂ© Ă l'aide de plusieurs modĂšles avec diffĂ©rents paramĂštres cosmologiques, les paramĂštres informatifs de notre ajustement sont fixĂ©s Ă leur valeur ÎCDM+GR pour ensuite interpoler, Ă l'aide d'un processus gaussien, la nappe de ÏÂČ sur l'espace des paramĂštres cosmologiques pour ajuster ces derniers. Cela permet de ne pas compresser l'information. Ce faisant, nous ajustons l'ensemble des paramĂštres cosmologiques sans a priori provenant de sondes externes comme cela est habituellement fait dans les analyses de la structuration de galaxies. En analysant le relevĂ© de quasars, nous augmentons le dĂ©saccord avec Planck sur l'amplitude des fluctuations de matiĂšre, Ïâ, Ă 3.1Ï. Notre analyse conjointe des relevĂ©s de quasars et de LRG de eBOSS ainsi que du relevĂ© low-z de BOSS est en accord avec l'analyse de Planck. Nous obtenons des contraintes plus fortes sur Ωm qu'avec les analyses standard de SDSS. Cette mĂ©thode pourra ĂȘtre utilisĂ©e dans le cadre des futurs grands relevĂ©s spectroscopiques tel que DESI ou Euclid pour minimiser l'erreur systĂ©matique due au modĂšle tout en amĂ©liorant les contraintes statistiques