208 research outputs found

    The soft X-ray emission in a large sample of galaxy clusters with ROSAT PSPC

    Full text link
    The study of soft X-ray emission of 38 X-ray selected galaxy clusters observed by ROSAT PSPC indicates that the soft excess phenomenon may be a common occurrence in galaxy clusters. Excess soft X-ray radiation, above the contribution from the hot intra-cluster medium, is evident in a large fraction of sources, and is clearly detected with large statistical significance in the deepest observations. The investigation relies on new, high resolution 21 cm HI observations. The sample selection also features analysis of infra-red images, to further ensure reliability of results with respect to the characteristics of Galactic absorption. The possibility of background or calibration effects as cause of the excess emission is likewise investigated; a detailed analysis of the distribution of the excess emission with respect to detector position and Galactic HI column density shows that the excess emission is a genuine celestial phenomenon. We find evidence for a preferential distribution of the soft excess emission at distances larger than ~150-200 kpc from the centers of clusters; this behavior may be naturally explained in the context of a non-thermal Inverse-Compton scenario. Alternatively, we propose that the phenomenon may be caused by thermal emission of very large-scale `warm' filaments seen in recent hydrodynamic simulations. This new interpretation relieves the very demanding requirements of either the traditional intra-cluster `warm' gas and the non-thermal scenarios. We also investigate the possibility of the soft excess originating from unresolved, X-ray faint cluster galaxies.Comment: ApJ in pres

    Fermi Discovery of Gamma-Ray Emission from NGC 1275

    Get PDF
    We report the discovery of high-energy (E>100 MeV) gamma-ray emission from NGC 1275, a giant elliptical galaxy lying at the center of the Perseus cluster of galaxies, based on observations made with the Large Area Telescope (LAT) of the Fermi Gamma ray Space Telescope. The positional center of the gamma-ray source is only ~3' away from the NGC 1275 nucleus, well within the 95% LAT error circle of ~5'.The spatial distribution of gamma-ray photons is consistent with a point source. The average flux and power-law photon index measured with the LAT from 2008 August 4 to 2008 December 5 are F_gamma = (2.10+-0.23)x 10^{-7} ph (>100 MeV) cm^{-2} s^{-1} and Gamma = 2.17+-0.05, respectively. The measurements are statistically consistent with constant flux during the four-month LAT observing period.Previous EGRET observations gave an upper limit of F_gamma 100 MeV) cm^{-2} s^{-1} to the gamma-ray flux from NGC 1275. This indicates that the source is variable on timescales of years to decades, and therefore restricts the fraction of emission that can be produced in extended regions of the galaxy cluster. Contemporaneous and historical radio observations are also reported. The broadband spectrum of NGC 1275 is modeled with a simple one-zone synchrotron/synchrotron self-Compton model and a model with a decelerating jet flow.Comment: 27 pages, 7 figures, Accepted for publication in the Astrophysical Journa

    Constraining the cosmic equation of state from old galaxies at high redshift

    Get PDF
    New limits on the cosmic equation of state are derived from age measurements of three recently reported old high redshift galaxies (OHRG). The results are based on a flat FRW type cosmological model driven by nonrelativistic matter plus a smooth component parametrized by its equation of state px=ωρxp_{x} = \omega\rho_{x} (ω1\omega \geq -1). The range of ω\omega is strongly dependent on the matter density parameter. For ΩM0.3\Omega_{M} \sim 0.3, as indicated from dynamical measurements, the age estimates of the OHRG restricts the cosmic parameter to ω0.27\omega\leq - 0.27. However, if ΩM\Omega_{M} is the one suggested by some studies of field galaxies, i.e, ΩM0.5\Omega_{M} \simeq 0.5, only a cosmological constant (ω=1\omega=-1) may be compatible with these data.Comment: 4 pages, 1 figure, MNRA

    Missing value imputation improves clustering and interpretation of gene expression microarray data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Missing values frequently pose problems in gene expression microarray experiments as they can hinder downstream analysis of the datasets. While several missing value imputation approaches are available to the microarray users and new ones are constantly being developed, there is no general consensus on how to choose between the different methods since their performance seems to vary drastically depending on the dataset being used.</p> <p>Results</p> <p>We show that this discrepancy can mostly be attributed to the way in which imputation methods have traditionally been developed and evaluated. By comparing a number of advanced imputation methods on recent microarray datasets, we show that even when there are marked differences in the measurement-level imputation accuracies across the datasets, these differences become negligible when the methods are evaluated in terms of how well they can reproduce the original gene clusters or their biological interpretations. Regardless of the evaluation approach, however, imputation always gave better results than ignoring missing data points or replacing them with zeros or average values, emphasizing the continued importance of using more advanced imputation methods.</p> <p>Conclusion</p> <p>The results demonstrate that, while missing values are still severely complicating microarray data analysis, their impact on the discovery of biologically meaningful gene groups can – up to a certain degree – be reduced by using readily available and relatively fast imputation methods, such as the Bayesian Principal Components Algorithm (BPCA).</p

    Parameter and model uncertainty in a life-table model for fine particles (PM2.5): a statistical modeling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The estimation of health impacts involves often uncertain input variables and assumptions which have to be incorporated into the model structure. These uncertainties may have significant effects on the results obtained with model, and, thus, on decision making. Fine particles (PM<sub>2.5</sub>) are believed to cause major health impacts, and, consequently, uncertainties in their health impact assessment have clear relevance to policy-making. We studied the effects of various uncertain input variables by building a life-table model for fine particles.</p> <p>Methods</p> <p>Life-expectancy of the Helsinki metropolitan area population and the change in life-expectancy due to fine particle exposures were predicted using a life-table model. A number of parameter and model uncertainties were estimated. Sensitivity analysis for input variables was performed by calculating rank-order correlations between input and output variables. The studied model uncertainties were (i) plausibility of mortality outcomes and (ii) lag, and parameter uncertainties (iii) exposure-response coefficients for different mortality outcomes, and (iv) exposure estimates for different age groups. The monetary value of the years-of-life-lost and the relative importance of the uncertainties related to monetary valuation were predicted to compare the relative importance of the monetary valuation on the health effect uncertainties.</p> <p>Results</p> <p>The magnitude of the health effects costs depended mostly on discount rate, exposure-response coefficient, and plausibility of the cardiopulmonary mortality. Other mortality outcomes (lung cancer, other non-accidental and infant mortality) and lag had only minor impact on the output. The results highlight the importance of the uncertainties associated with cardiopulmonary mortality in the fine particle impact assessment when compared with other uncertainties.</p> <p>Conclusion</p> <p>When estimating life-expectancy, the estimates used for cardiopulmonary exposure-response coefficient, discount rate, and plausibility require careful assessment, while complicated lag estimates can be omitted without this having any major effect on the results.</p

    Aberrant Expression of Proteins Involved in Signal Transduction and DNA Repair Pathways in Lung Cancer and Their Association with Clinical Parameters

    Get PDF
    Because cell signaling and cell metabolic pathways are executed through proteins, protein signatures in primary tumors are useful for identifying key nodes in signaling networks whose alteration is associated with malignancy and/or clinical outcomes. This study aimed to determine protein signatures in primary lung cancer tissues.We analyzed 126 proteins and/or protein phosphorylation sites in case-matched normal and tumor samples from 101 lung cancer patients with reverse-phase protein array (RPPA) assay. The results showed that 18 molecules were significantly different (p<0.05) by at least 30% between normal and tumor tissues. Most of those molecules play roles in cell proliferation, DNA repair, signal transduction and lipid metabolism, or function as cell surface/matrix proteins. We also validated RPPA results by Western blot and/or immunohistochemical analyses for some of those molecules. Statistical analyses showed that Ku80 levels were significantly higher in tumors of nonsmokers than in those of smokers. Cyclin B1 levels were significantly overexpressed in poorly differentiated tumors while Cox2 levels were significantly overexpressed in neuroendocrinal tumors. A high level of Stat5 is associated with favorable survival outcome for patients treated with surgery.Our results revealed that some molecules involved in DNA damage/repair, signal transductions, lipid metabolism, and cell proliferation were drastically aberrant in lung cancer tissues, and Stat5 may serve a molecular marker for prognosis of lung cancers

    Favorable prognostic value of SOCS2 and IGF-I in breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suppressor of cytokine signaling (SOCS) proteins comprise a protein family, which has initially been described as STAT induced inhibitors of the Jak/Stat pathway. Recent in vivo and in vitro studies suggest that SOCS proteins are also implicated in cancer. The STAT5 induced IGF-I acts as an endocrine and para/autocrine growth and differentiation factor in mammary gland development. Whereas high levels of circulating IGF-I have been associated with increased cancer risk, the role of autocrine acting IGF-I is less clear. The present study is aimed to elucidate the clinicopathological features associated with SOCS1, SOCS2, SOCS3, CIS and IGF-I expression in breast cancer.</p> <p>Methods</p> <p>We determined the mRNA expression levels of SOCS1, SOCS2, SOCS3, CIS and IGF-I in 89 primary breast cancers by reverse transcriptase PCR. SOCS2 protein expression was further evaluated by immuno-blot and immunohistochemistry.</p> <p>Results</p> <p>SOCS2 expression inversely correlated with histopathological grade and ER positive tumors exhibited higher SOCS2 levels. Patients with high SOCS2 expression lived significantly longer (108.7 vs. 77.7 months; P = 0.015) and high SOCS2 expression proved to be an independent predictor for good prognosis (HR = 0.45, 95% CI 0.23 – 0.91, P = 0.026). In analogy to SOCS2, high IGF-I expression was an independent predictor for good prognosis in the entire patient cohort. In the subgroup of patients with lymph-node negative disease, high IGF-I was a strong predictor for favorable outcome in terms of overall survival and relapse free survival (HR = 0.075, 95% CI 0.014 – 0.388, P = 0.002).</p> <p>Conclusion</p> <p>This is the first report on the favorable prognostic value of high SOCS2 expression in primary mammary carcinomas. Furthermore a strong association of high IGF-I expression levels with good prognosis was observed especially in lymph-node negative patients. Our results suggest that high expression of the STAT5 target genes SOCS2 and IGF-I is a feature of differentiated and less malignant tumors.</p

    The NHXM observatory

    Get PDF

    Planck early results. XXVI. Detection with Planck and confirmation by XMM-Newton of PLCK G266.6-27.3, an exceptionally X-ray luminous and massive galaxy cluster at z ~ 1

    Get PDF
    corecore