235 research outputs found

    Identification of substitutional Li in n-type ZnO and its role as an acceptor

    Get PDF
    Monocrystalline n-type zinc oxide (ZnO) samples prepared by different techniques and containing various amounts of lithium (Li) have been studied by positron annihilation spectroscopy (PAS) and secondary ion mass spectrometry. A distinct PAS signature of negatively charged Li atoms occupying a Zn-site (Li−Zn), so-called substitutional Li, is identified and thus enables a quantitative determination of the content of LiZn. In hydrothermally grown samples with a total Li concentration of ~2×10 exp 17 cm exp −3,LiZn is found to prevail strongly, with only minor influence, by other possible configurations of Li. Also in melt grown samples doped with Li to a total concentration as high as 1.5×10 exp 19 cm exp −3, a considerable fraction of the Li atoms (at least 20%) is shown to reside on the Zn-site, but despite the corresponding absolute acceptor concentration of â©Ÿ(2–3)×10 exp 18 cm exp −3, the samples did not exhibit any detectable p-type conductivity. The presence of LiZn is demonstrated to account for the systematic difference in positron lifetime of 10–15 ps between Li-rich and Li-lean ZnO materials as found in the literature, but further work is needed to fully elucidate the role of residual hydrogen impurities and intrinsic open volume defects.Peer reviewe

    Comparative Hepatic and Intestinal Metabolism and Pharmacodynamics of Statins

    Get PDF
    The study aimed to comprehensively investigate the in vitro metabolism of statins. The metabolism of clinically relevant concentrations of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, simvastatin, and their metabolites were investigated using human liver microsomes (HLMs), human intestine microsomes (HIMs), liver cytosol, and recombinant cytochrome P450 enzymes. We also determined the inhibitory effects of statin acids on their pharmacological target, 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase. In HLMs, statin lactones were metabolized to a much higher extent than their acid forms. Atorvastatin lactone and simvastatin (lactone) showed extensive metabolism [intrinsic clearance (CLint) values of 3700 and 7400 mu l/min per milligram], whereas the metabolism of the lactones of 2-hydroxyatorvastatin, 4-hydroxyatorvastatin, and pitavastatin was slower (CLint 20-840 mu l/min per milligram). The acids had CLint values in the range SIGNIFICANCE STATEMENT The present comparison of the in vitro metabolic and pharmacodynamic properties of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin and their metabolites using unified methodology provides a strong basis for further application. Together with in vitro drug transporter and clinical data, the present findings are applicable for use in comparative systems pharmacology modeling to predict the pharmacokinetics and pharmacological effects of statins at different dosages.Peer reviewe

    Two Legionnaires' disease cases associated with industrial waste water treatment plants: a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Finnish and Swedish waste water systems used by the forest industry were found to be exceptionally heavily contaminated with legionellae in 2005.</p> <p>Case presentation</p> <p>We report two cases of severe pneumonia in employees working at two separate mills in Finland in 2006. <it>Legionella </it>serological and urinary antigen tests were used to diagnose Legionnaires' disease in the symptomatic employees, who had worked at, or close to, waste water treatment plants. Since the findings indicated a <it>Legionella </it>infection, the waste water and home water systems were studied in more detail. The antibody response and <it>Legionella </it>urinary antigen finding of Case A indicated that the infection had been caused by <it>Legionella pneumophila </it>serogroup 1. Case A had been exposed to legionellae while installing a pump into a post-clarification basin at the waste water treatment plant of mill A. Both the water and sludge in the basin contained high concentrations of <it>Legionella pneumophila </it>serogroup 1, in addition to serogroups 3 and 13. Case B was working 200 meters downwind from a waste water treatment plant, which had an active sludge basin and cooling towers. The antibody response indicated that his disease was due to <it>Legionella pneumophila </it>serogroup 2. The cooling tower was the only site at the waste water treatment plant yielding that serogroup, though water in the active sludge basin yielded abundant growth of <it>Legionella pneumophila </it>serogroup 5 and <it>Legionella rubrilucens</it>. Both workers recovered from the disease.</p> <p>Conclusion</p> <p>These are the first reported cases of Legionnaires' disease in Finland associated with industrial waste water systems.</p

    SH3 Domain-Mediated Recruitment of Host Cell Amphiphysins by Alphavirus nsP3 Promotes Viral RNA Replication

    Get PDF
    Among the four non-structural proteins of alphaviruses the function of nsP3 is the least well understood. NsP3 is a component of the viral replication complex, and composed of a conserved aminoterminal macro domain implicated in viral RNA synthesis, and a poorly conserved carboxyterminal region. Despite the lack of overall homology we noted a carboxyterminal proline-rich sequence motif shared by many alphaviral nsP3 proteins, and found it to serve as a preferred target site for the Src-homology 3 (SH3) domains of amphiphysin-1 and -2. Nsp3 proteins of Semliki Forest (SFV), Sindbis (SINV), and Chikungunya viruses all showed avid and SH3-dependent binding to amphiphysins. Upon alphavirus infection the intracellular distribution of amphiphysin was dramatically altered and colocalized with nsP3. Mutations in nsP3 disrupting the amphiphysin SH3 binding motif as well as RNAi-mediated silencing of amphiphysin-2 expression resulted in impaired viral RNA replication in HeLa cells infected with SINV or SFV. Infection of Balb/c mice with SFV carrying an SH3 binding-defective nsP3 was associated with significantly decreased mortality. These data establish SH3 domain-mediated binding of nsP3 with amphiphysin as an important host cell interaction promoting alphavirus replication

    SNAP-tagged Chikungunya Virus Replicons Improve Visualisation of Non-Structural Protein 3 by Fluorescence Microscopy

    Get PDF
    Chikungunya virus (CHIKV), a mosquito-borne alphavirus, causes febrile disease, muscle and joint pain, which can become chronic in some individuals. The non-structural protein 3 (nsP3) plays essential roles during infection, but a complete understanding of its function is lacking. Here we used a microscopy-based approach to image CHIKV nsP3 inside human cells. The SNAP system consists of a self-labelling enzyme tag, which catalyses the covalent linking of exogenously supplemented synthetic ligands. Genetic insertion of this tag resulted in viable replicons and specific labelling while preserving the effect of nsP3 on stress granule responses and co-localisation with GTPase Activating Protein (SH3 domain) Binding Proteins (G3BPs). With sub-diffraction, three-dimensional, optical imaging, we visualised nsP3-positive structures with variable density and morphology, including high-density rod-like structures, large spherical granules, and small, low-density structures. Next, we confirmed the utility of the SNAP tag for studying protein turnover by pulse-chase labelling. We also revealed an association of nsP3 with cellular lipid droplets and examined the spatial relationships between nsP3 and the non-structural protein 1 (nsP1). Together, our study provides a sensitive, specific, and versatile system for fundamental research into the individual functions of a viral non-structural protein during infection with a medically important arthropod-borne virus (arbovirus)

    Assessing the influence of the built environment on physical activity for utility and recreation in suburban metro Vancouver

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Physical inactivity and associated co-morbidities such as obesity and cardiovascular disease are estimated to have large societal costs. There is increasing interest in examining the role of the built environment in shaping patterns of physical activity. However, few studies have: (1) simultaneously examined physical activity for leisure and utility; (2) selected study areas with a range of built environment characteristics; and (3) assessed the built environment using high-resolution land use data.</p> <p>Methods</p> <p>Data on individuals used for this study are from a survey of 1602 adults in selected sites across suburban Metro Vancouver. Four types of physical activity were assessed: walking to work/school, walking for errands, walking for leisure and moderate physical activity for exercise. The built environment was assessed by constructing one-kilometre road network buffers around each respondent's postal code. Measures of the built environment include terciles of recreational and park land, residential land, institutional land, commercial land and land use mix.</p> <p>Results</p> <p>Logistic regression analyses showed that walking to work/school and moderate physical activity were not associated with any built environment measure. Living in areas with lower land use mix, lower commercial and lower recreational land increased the odds of low levels of walking for errands. Individuals living in the lower third of land use mix and institutional land were more likely to report low levels of walking for leisure.</p> <p>Conclusions</p> <p>These results suggest that walking for errands and leisure have a greater association with the built environment than other dimensions of physical activity.</p

    Cross-Dehydrogenative Couplings between Indoles and ÎČ-Keto Esters : Ligand-Assisted Ligand Tautomerization and Dehydrogenation via a Proton-Assisted Electron Transfer to Pd(II)

    Get PDF
    Cross-dehydrogenative coupling reactions between -ketoesters and electron-rich arenes, such as indoles, proceed with high regiochemical fidelity with a range of -ketoesters and indoles. The mechanism of the reaction between a prototypical -ketoester, ethyl 2-oxocyclopentanonecarboxylate and N-methylindole, has been studied experimentally by monitoring the temporal course of the reaction by 1H NMR, kinetic isotope effect studies, and control experiments. DFT calculations have been carried out using a dispersion-corrected range-separated hybrid functional (B97X-D) to explore the basic elementary steps of the catalytic cycle. The experimental results indicate that the reaction proceeds via two catalytic cycles. Cycle A, the dehydrogenation cycle, produces an enone intermediate. The dehydrogenation is assisted by N-methylindole, which acts as a ligand for Pd(II). The compu-tational studies agree with this conclusion, and identify the turnover-limiting step of the dehydrogenation step, which involves a change in the coordination mode of the -keto ester ligand from an O,O’-chelate to an C-bound Pd enolate. This ligand tautom-erization event is assisted by the -bound indole ligand. Subsequent scission of the ’-C–H bond takes place via a proton-assisted electron transfer mechanism, where Pd(II) acts as an electron sink and the trifluoroacetate ligand acts as a proton acceptor, to pro-duce the Pd(0) complex of the enone intermediate. The coupling is completed in cycle B, where the enone is coupled with indole. Pd(TFA)2 and TFA-catalyzed pathways were examined experimentally and computationally for this cycle, and both were found to be viable routes for the coupling step

    The SARS-Unique Domain (SUD) of SARS Coronavirus Contains Two Macrodomains That Bind G-Quadruplexes

    Get PDF
    Since the outbreak of severe acute respiratory syndrome (SARS) in 2003, the three-dimensional structures of several of the replicase/transcriptase components of SARS coronavirus (SARS-CoV), the non-structural proteins (Nsps), have been determined. However, within the large Nsp3 (1922 amino-acid residues), the structure and function of the so-called SARS-unique domain (SUD) have remained elusive. SUD occurs only in SARS-CoV and the highly related viruses found in certain bats, but is absent from all other coronaviruses. Therefore, it has been speculated that it may be involved in the extreme pathogenicity of SARS-CoV, compared to other coronaviruses, most of which cause only mild infections in humans. In order to help elucidate the function of the SUD, we have determined crystal structures of fragment 389–652 (“SUDcore”) of Nsp3, which comprises 264 of the 338 residues of the domain. Both the monoclinic and triclinic crystal forms (2.2 and 2.8 Å resolution, respectively) revealed that SUDcore forms a homodimer. Each monomer consists of two subdomains, SUD-N and SUD-M, with a macrodomain fold similar to the SARS-CoV X-domain. However, in contrast to the latter, SUD fails to bind ADP-ribose, as determined by zone-interference gel electrophoresis. Instead, the entire SUDcore as well as its individual subdomains interact with oligonucleotides known to form G-quadruplexes. This includes oligodeoxy- as well as oligoribonucleotides. Mutations of selected lysine residues on the surface of the SUD-N subdomain lead to reduction of G-quadruplex binding, whereas mutations in the SUD-M subdomain abolish it. As there is no evidence for Nsp3 entering the nucleus of the host cell, the SARS-CoV genomic RNA or host-cell mRNA containing long G-stretches may be targets of SUD. The SARS-CoV genome is devoid of G-stretches longer than 5–6 nucleotides, but more extended G-stretches are found in the 3â€Č-nontranslated regions of mRNAs coding for certain host-cell proteins involved in apoptosis or signal transduction, and have been shown to bind to SUD in vitro. Therefore, SUD may be involved in controlling the host cell's response to the viral infection. Possible interference with poly(ADP-ribose) polymerase-like domains is also discussed

    Municipal distribution of ovarian cancer mortality in Spain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Spain was the country that registered the greatest increases in ovarian cancer mortality in Europe. This study describes the municipal distribution of ovarian cancer mortality in Spain using spatial models for small-area analysis.</p> <p>Methods</p> <p>Smoothed relative risks of ovarian cancer mortality were obtained, using the Besag, York and Molliù autoregressive spatial model. Standardised mortality ratios, smoothed relative risks, and distribution of the posterior probability of relative risks being greater than 1 were depicted on municipal maps.</p> <p>Results</p> <p>During the study period (1989–1998), 13,869 ovarian cancer deaths were registered in 2,718 Spanish towns, accounting for 4% of all cancer-related deaths among women. The highest relative risks were mainly concentrated in three areas, i.e., the interior of Barcelona and Gerona (north-east Spain), the north of Lugo and Asturias (north-west Spain) and along the Seville-Huelva boundary (in the south-west). Eivissa (Balearic Islands) and El Hierro (Canary Islands) also registered increased risks.</p> <p>Conclusion</p> <p>Well established ovarian cancer risk factors might not contribute significantly to the municipal distribution of ovarian cancer mortality. Environmental and occupational exposures possibly linked to this pattern and prevalent in specific regions, are discussed in this paper. Small-area geographical studies are effective instruments for detecting risk areas that may otherwise remain concealed on a more reduced scale.</p
    • 

    corecore