852 research outputs found
A flight investigation of a 4D area navigation system concept for STOL aircraft in the terminal area
A digital avionics system referred to as STOLAND was test flown in the NASA CV-340 aircraft to obtain performance data for time controlled guidance in the manual flight director mode. The advanced system components installed in the cockpit included an electronic attitude director indicator and an electronic multifunction display. Navigation guidance and control computations were performed on a digital computer. A detailed 4D area navigation systems description is given. The pilot/system interface and systems operation and performance are also described. Approach flightpaths were flown which included a 180 deg turn and a 1-min, 5 deg straight-in approach to 30 m altitude, at which point go-around was initiated. Results are presented for 19 approaches
Kinetics of Intramolecular Chemical Exchange by Initial Growth Rates of Spin Saturation Transfer Difference Experiments (SSTD NMR)
We report here the Initial Growth Rates SSTD NMR method, as a new powerful tool to obtain the kinetic parameters of intramolecular chemical exchange in challenging small organic and organometallic molecules
The structure of iterative methods for symmetric linear discrete ill-posed problems
The iterative solution of large linear discrete ill-posed problems with an error contaminated data vector requires the use of specially designed methods in order to avoid severe error propagation. Range restricted minimal residual methods have been found to be well suited for the solution of many such problems. This paper discusses the structure of matrices that arise in a range restricted minimal residual method for the solution of large linear discrete ill-posed problems with a symmetric matrix. The exploitation of the structure results in a method that is competitive with respect to computer storage, number of iterations, and accuracy.Acknowledgments We would like to thank the referees for comments. The work of F. M. was supported
by Dirección General de Investigación Científica y Técnica, Ministerio de Economía y Competitividad of
Spain under grant MTM2012-36732-C03-01. Work of L. R. was supported by Universidad Carlos III de
Madrid in the Department of Mathematics during the academic year 2010-2011 within the framework of
the Chair of Excellence Program and by NSF grant DMS-1115385
Atmospheric emissions from the deepwater Horizon spill constrain air-water partitioning, hydrocarbon fate, and leak rate
The fate of deepwater releases of gas and oil mixtures is initially determined by solubility and volatility of individual hydrocarbon species; these attributes determine partitioning between air and water. Quantifying this partitioning is necessary to constrain simulations of gas and oil transport, to predict marine bioavailability of different fractions of the gas-oil mixture, and to develop a comprehensive picture of the fate of leaked hydrocarbons in the marine environment. Analysis of airborne atmospheric data shows massive amounts (∼258,000 kg/day) of hydrocarbons evaporating promptly from the Deepwater Horizon spill; these data collected during two research flights constrain air-water partitioning, thus bioavailability and fate, of the leaked fluid. This analysis quantifies the fraction of surfacing hydrocarbons that dissolves in the water column (∼33% by mass), the fraction that does not dissolve, and the fraction that evaporates promptly after surfacing (∼14% by mass). We do not quantify the leaked fraction lacking a surface expression; therefore, calculation of atmospheric mass fluxes provides a lower limit to the total hydrocarbon leak rate of 32,600 to 47,700 barrels of fluid per day, depending on reservoir fluid composition information. This study demonstrates a new approach for rapid-response airborne assessment of future oil spills. Copyright 2011 by the American Geophysical Union
Delayed self-recognition in children with autism spectrum disorder.
This study aimed to investigate temporally extended self-awareness (awareness of one’s place in and continued existence through time) in autism spectrum disorder (ASD), using the delayed self-recognition (DSR) paradigm (Povinelli et al., Child Development 67:1540–1554, 1996). Relative to age and verbal ability matched comparison children, children with ASD showed unattenuated performance on the DSR task, despite showing significant impairments in theory-of-mind task performance, and a reduced propensity to use personal pronouns to refer to themselves. The results may indicate intact temporally extended self-awareness in ASD. However, it may be that the DSR task is not an unambiguous measure of temporally extended self-awareness and it can be passed through strategies which do not require the possession of a temporally extended self-concept
Self-similar Approximants of the Permeability in Heterogeneous Porous Media from Moment Equation Expansions
We use a mathematical technique, the self-similar functional renormalization,
to construct formulas for the average conductivity that apply for large
heterogeneity, based on perturbative expansions in powers of a small parameter,
usually the log-variance of the local conductivity. Using
perturbation expansions up to third order and fourth order in
obtained from the moment equation approach, we construct the general functional
dependence of the transport variables in the regime where is of
order 1 and larger than 1. Comparison with available numerical simulations give
encouraging results and show that the proposed method provides significant
improvements over available expansions.Comment: Latex, 14 pages + 5 ps figure
Recommended from our members
Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
The 5'-cap-structures of higher eukaryote mRNAs are ribose 2'-O-methylated. Likewise, a number of viruses replicating in the cytoplasm of eukayotes have evolved 2'-O-methyltransferases to modify autonomously their mRNAs. However, a defined biological role of mRNA 2'-O-methylation remains elusive. Here we show that viral mRNA 2'-O-methylation is critically involved in subversion of type-I-interferon (IFN-I) induction. We demonstrate that human and murine coronavirus 2'-O-methyltransferase mutants induce increased IFN-I expression, and are highly IFN-I sensitive. Importantly, IFN-I induction by 2'-O-methyltransferase-deficient viruses is dependent on the cytoplasmic RNA sensor melanoma differentiation-associated gene 5 (MDA5). This link between MDA5-mediated sensing of viral RNA and mRNA 2'-O-methylation suggests that RNA modifications, such as 2'-O-methylation, provide a molecular signature for the discrimination of self and non-self mRNA
Modeling focal epileptic activity in the Wilson-Cowan model with depolarization block
Measurements of neuronal signals during human seizure activity and evoked epileptic activity in experimental models suggest that, in these pathological states, the individual nerve cells experience an activity driven depolarization block, i.e. they saturate. We examined the effect of such a saturation in the Wilson–Cowan formalism by adapting the nonlinear activation function; we substituted the commonly applied sigmoid for a Gaussian function. We discuss experimental recordings during a seizure that support this substitution. Next we perform a bifurcation analysis on the Wilson–Cowan model with a Gaussian activation function. The main effect is an additional stable equilibrium with high excitatory and low inhibitory activity. Analysis of coupled local networks then shows that such high activity can stay localized or spread. Specifically, in a spatial continuum we show a wavefront with inhibition leading followed by excitatory activity. We relate our model simulations to observations of spreading activity during seizures
- …
