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TABLE 1. GENES SELECTED FOR ANALYSIS

Current Study
• Made use of:

• Large, existing, genotyped sample,
• Selected specifically for phenotype(s) of interest

• Conducted intra-sample cross-validation
• Focused analyses on dopamine system

• Reduced likelihood of including “noise” SNPs
• Increased ability to identify optimal SNP scoring set

Participants
• 1591 unrelated individuals from the Study of Addiction: Genetics and Environment

(SAGE) who reported having ever used cocaine.
• SAGE participants drawn from three primary studies of cocaine (FSCD), alcohol

(COGA), and nicotine dependence (COGEND)

Measures
• Cocaine, alcohol, nicotine, and marijuana dependence symptom counts
• Assessed via the Semi-Structured Assessment for the Genetics of Alcoholism

(SSAGA-II), which has demonstrated validity and reliability.
• Marijuana symptom counts log-transformed [i.e., ln(symptoms+1)] to obtain normally

distributed residuals
• Other substance symptom counts (i.e., cocaine, alcohol, nicotine) untransformed

FIGURE 1. VARIANCE EXPLAINED BY TOP 4 TRAINING SAMPLE SNPs

Conclusions
• Association between cocaine and dopamine at system level

• Optimal risk score incorporated 4 SNPs from 4 separate genes
• Cocaine-derived genetic risk score predicted cocaine (R2 = 0.546%, p = 0.037)

• Did not predict alcohol, tobacco, or marijuana dependence severity (p > 0.78).
• Individual effects of SNPs did not replicate across samples

• Training sample: p = 0.012 - 0.032
• Testing sample: p = 0.14 - 0.59

• Only significant in aggregate
• Narrow SNP selection criteria limited inclusion of spurious SNPs in risk score

• Decreased the “noise” in true score “measurement”
• Provides greater power

• Detected 4 SNPs accounting for 0.55% of replication sample variance in cocaine
• (Compare to recent genome-wide schizophrenia score12, explaining ~3% of

variance with >37,000 SNPs)

TABLE 2. TRAINING SAMPLE TOP SNPs
USED TO ESTIMATE TESTING SAMPLE GENETIC RISK SCORES

Results
• Top 4 training sample SNPs (Table 2) explained:

• 0.546% variance in testing sample cocaine dependence symptoms (p < 0.037);
• 0.004% variance in alcohol (p = 0.854);
• 0.010% variance in nicotine (p = 0.781);
• 0.003% variance in marijuana (p = 0.879)

• Top 4 SNPs in 4 different genes
• Linkage disequilibrium (LD) unlikely to affect results

Analyses
• Sample split in half randomly creating “training” sample and “testing” sample

• Halves did not differ on covariates or phenotypes
• Dependence symptom counts residualized over covariates:

• sex; age in quartiles; primary study source; ancestry (i.e., PC1 and PC2)
• SNPs coded for number of minor alleles

• Missing SNPs imputed as 2*MAF
• Association tests run in training sample between cocaine symptoms and each SNP
• SNPs incorporated one at a time to calculate testing sample score, in order of

ascending training sample p-values:

(1) Score = ∑ (N Minor Alleles for SNP i*B SNP i)

• SNPs (weighted by training sample regression weights) added to the score until testing
sample variance explained began decreasing

• Specificity investigated by correlating score with alcohol, tobacco, and marijuana in
testing sample
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Genotyping
• DNA obtained from blood samples
• Genotyping conducted at Johns Hopkins University Center for Inherited Disease

Research (CIDR) using Illumina Human IM Bead Chip.
• Quality control procedures included:

• Assessment of population structure, missing call rates, Mendelian errors, duplication
errors, gender and chromosomal anomalies, hidden relatedness, batch effects, and
Hardy-Weinberg disequilibrium;

• Removal of duplicates, related subjects, and outliers;
• Median missing call rate < 0.05%;
• 95% SNPs had <1.4% missingness

• 948,142 SNPs passed quality control.
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Gene selection
• Genes included if:

• Autosomal;
• Definite, direct effect on dopamine

• Identified N=8 genes (see Table 1)
• N=273 SNPs on Illumina 1M Chip

• (Genes & SNPs identical to ones in association study of sensation seeking using
partially overlapping sample11)

SNP Gene Chr Function Allele MAF B Z p B Z p

rs1611131 DBH 9 Intron G 0.23 -0.4 -2.5 0.012 -0.1 -0.9 0.348

rs5326 DRD1 5 UTR-5 A 0.14 0.5 2.4 0.015 0.1 0.5 0.588

rs9817063 DRD3 3 NearGene-3 C 0.45 0.3 2.2 0.026 0.2 1.5 0.142

rs1079597 DRD2 11 Intron A 0.16 0.4 2.2 0.032 0.2 1.4 0.159

Training sample Testing sample

Background
• Cocaine dependence highly comorbid with psychiatric and other substance disorders1

• 40-80% variance in cocaine dependence from additive genetic factors2-4

• Most genetic variance in cocaine dependence shared with other substances5

• Dopamine implicated as primary neurotransmitter system involved in responses to
cocaine exposure6-8

• Cocaine competitively inhibits dopamine transportation by binding to overlapping sites
on dopamine transporter9

• Administration of typical dose blocks majority of dopamine transporter sites10

• Blocking sites results in increased synaptic dopamine, contributing to reinforcing and
addictive properties of cocaine

Gene Location SNPs Role in Dopamine (DA)
DRD3 3q13.3 32 codes D3 subtype of DA receptors
SLC6A3 5p15.3 35 transporter, mediates DA reuptake
DRD1 5q35.1 9 codes D1 subtype of DA receptors
DDC 7p12.2 81 protein coded converts L-DOPA to DA
DBH 9q34 37 converts DA to norepinephrine
DRD4 11p15.5 4 codes D4 subtype of DA receptors
DRD2 11q23 40 codes D2 subtype of DA receptors
COMT 22q11.21 35 affects catecholamine degradation
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