
This is a postprint version of the following published document:

Dykes, L., Marcellán, F., & Reichel, L. (2014). The
structure of iterative methods for symmetric linear
discrete ill-posed problems. BIT , 54, pp. 129-145.
DOI: 10.1007/s10543-014-0476-2

© Springer 2014

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/44311481?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1007/s10543-014-0476-2
http://dx.doi.org/10.1016/j.jmaa.2013.09.057
http://dx.doi.org/10.1016/j.amc.2014.01.055

The structure of iterative methods for symmetric linear
discrete ill-posed problems

L. Dykes · F. Marcellán · L. Reichel

Abstract The iterative solution of large linear discrete ill-posed problems with an
error contaminated data vector requires the use of specially designed methods in order
to avoid severe error propagation. Range restricted minimal residual methods have
been found to be well suited for the solution of many such problems. This paper
discusses the structure of matrices that arise in a range restricted minimal residual
method for the solution of large linear discrete ill-posed problems with a symmetric
matrix. The exploitation of the structure results in a method that is competitive with
respect to computer storage, number of iterations, and accuracy.

Keywords Ill-posed problem · Iterative method · Truncated iteration

Mathematics Subject Classification (2000) 65F10 · 65F22

L. Dykes · L. Reichel (B)
Department of Mathematical Sciences, Kent State University,
Kent, OH 44242, USA
e-mail: reichel@math.kent.edu

L. Dykes
University School, Hunting Valley, OH 44022, USA
e-mail: ldykes@math.kent.edu

F. Marcellán
Departamento de Matemáticas, Universidad Carlos III de Madrid,
Avenida de la Universidad 30, 28911 Leganés, Spain
e-mail: pacomarc@ing.uc3m.es

1

1 Introduction

This paper describes range restricted iterative methods for the computation of approx-
imate solutions of linear systems of equations

Ax = b, A ∈ R
m×m, x, b ∈ R

m, (1.1)

with a large symmetric matrix A with many eigenvalues of different orders of magni-
tude close to zero. Thus, A is very ill-conditioned and may be singular. Linear systems
of equations (1.1) with a matrix of this kind are commonly referred to as linear discrete
ill-posed problems. They are obtained, for instance, by the discretization of linear ill-
posed problems, such as Fredholm integral equations of the first kind with a smooth
kernel.

In linear discrete ill-posed problems that arise in science and engineering, the right-
hand side vector b represents available data, which is contaminated by an error e that
stems from measurement inaccuracies. Thus,

b = b̂ + e, (1.2)

where b̂ ∈ R
m denotes the unknown error-free right-hand side associated with b. We

refer to the error vector e as “noise.”
Assume that the linear system of equations with the unknown error-free right-hand

side
Ax = b̂ (1.3)

is consistent and denote the solution of minimal Euclidean norm by x̂ . We would like
to determine an accurate approximation of x̂ by computing a suitable approximate
solution of the available linear system of equations (1.1). Because of the severe ill-
conditioning of the matrix A and the error e in b, the least-squares solution of minimal
norm of (1.1) generally is so contaminated by propagated error that it does not furnish
a useful approximation of x̂ .

A popular approach to determine a meaningful approximation of x̂ is to apply a
Krylov subspace iterative method to the solution of (1.1) and terminate the iterations
sufficiently early. This way of computing an approximate solution is known as trun-
cated iteration. It is easy to show that the sensitivity of the computed solution to the
error e increases with the number of iterations. Let xk denote the kth iterate determined
by a minimal residual Krylov subspace iterative method. These methods are related
to the conjugate gradient method; see below. Then the difference xk − x̂ typically
decreases as k increases and is small, but increases rapidly with k when k is large.
This behavior of the iterates is commonly referred to as semiconvergence. The growth
of the difference xk − x̂ for large values of k is caused by severe propagation of the
error e in b and of round-off errors introduced during the computations. It is important
to terminate the iterations before the difference xk − x̂ grows with k.

When an estimate of the norm of e is available, the discrepancy principle can be used
to determine how many iterations to carry out. We will use this stopping criterion in
the computed examples of Sect. 4; however, other stopping rules also can be applied in

2

conjunction with the iterative method discussed, such as the quasi-optimality principle,
generalized cross validation, and the L-curve; see, e.g., [1,13,14,19] for discussions
and references.

Let R(M) and N (M) denote the range and null space, respectively, of a matrix M . It
is natural to apply iterative methods with iterates in R(A) to the approximate solution
of (1.1), because these iterates are orthogonal to N (A). If a minimal residual iterative
method with iterates in R(A) is applied to the solution of (1.3) with initial iterate
x0 = 0, then, in exact arithmetic, the method will determine the desired minimal-
norm solution x̂ . We refer to iterative methods that generate approximate solutions
in R(A) as range restricted. Hanke [9] analyzed the convergence properties of range
restricted minimal residual Krylov subspace methods when used in conjunction with
the discrepancy principle, and used an Ortodir-type implementation in the computed
examples. This implementation was previously discussed in [5]. An improved imple-
mentation, that is less sensitive to round-off errors introduced during the computation,
has recently been described in [15, Section 3]. This implementation was derived by
first considering a range restricted GMRES-type method for the solution of linear dis-
crete ill-posed problems with a square nonsymmetric matrix A, and then simplifying
this method by exploiting the symmetry of A. It is the purpose of the present paper
to further investigate the structure of the matrices of the reduced problems deter-
mined by range restricted minimal residual Krylov subspace methods. This results
in a new efficient implementation that requires less storage than the implementation
[16] of [15, Algorithm 3.1]. Our new implementation only requires storage of few m-
vectors, whose number is bounded independently of the number of iterations carried
out.

This paper is organized as follows. Section 2 discusses the structure of the matrices
that arise in our range restricted minimal residual Krylov subspace methods. In Sect.
3, we exploit this structure to derive a new iterative method. Computed examples are
presented in Sect. 4 and concluding remarks can be found in Sect. 5.

We will for notational simplicity assume that the right-hand side vector b in (1.1)
is scaled to satisfy ‖b‖ = 1. Throughout this paper ‖ · ‖ denotes the Euclidean vector
norm. The initial iterate for all iterative methods is chosen to be x (0) = 0.

2 The structure of matrices in range restricted iterative methods

We consider iterative methods that determine iterates in R(A�) for some integer � ≥ 1.
The choice � = 1 has been demonstrated to give better results than � = 0 in, e.g.,
[4,11]; recent computed examples in [6] show that it can be beneficial to let � > 1
in minimal residual methods for the solution of linear discrete ill-posed problems
(1.1) with a nonsymmetric matrix A. We therefore, initially, will allow � ≥ 1 in the
present paper; however, the interesting case for linear discrete ill-posed problems with
a symmetric matrix is � = 1.

Introduce the Krylov subspaces

Kk(A, A�b) = span{A�b, A�+1b, . . . , A�+k−1b}, k = 1, 2, 3,

3

We are concerned with the minimal residual Krylov subspace method, whose kth
iterate x (�)

k is characterized by

‖Ax (�)
k − b‖ = min

x∈Kk (A,A�b)
‖Ax − b‖, x (�)

k ∈ Kk(A, A�b). (2.1)

The initial iterate is x (�)
0 = 0 and all iterates live in R(A�). We refer to this method

as MINRES(�). The method is range restricted when � ≥ 1. MINRES(0) is the
standard MINRES method by Paige and Saunders [17]. Computed examples reported
in [4] show that when the desired solution x̂ is a discretization of a smooth function,
MINRES(1) yields more accurate approximations of x̂ than MINRES(0); see also
Sect. 4 for an illustration. We therefore will not consider MINRES(0) in this paper.
The following result is helpful to explore the structure of the matrices for reduced
linear discrete ill-posed problems generated by the minimal residual Krylov subspace
method of primary interest for us.

Proposition 2.1 Let dμ be a nontrivial probability measure supported on an infinite
subset of points on the real line. Introduce the families of orthonormal polynomials
{p j }∞j=0 and { p̂ j }∞j=0 such that

〈p j , pi 〉 :=
∫

p j (t)pi (t)dμ(t) =
{

1, j = i,
0, j �= i,

(2.2)

〈 p̂ j , p̂i 〉tβ :=
∫

p̂ j (t) p̂i (t)t
βdμ(t) =

{
1, j = i,
0, j �= i,

(2.3)

where β ≥ 1 is a positive integer, and p j and p̂ j are polynomials of degree j with
positive leading coefficient. Generically, all polynomials p̂ j exist and

p j (t) = α j, j p̂ j (t) + α j, j−1 p̂ j−1(t) + . . . + α j, j−β p̂ j−β(t), j = 0, 1, 2, . . . ,

(2.4)
where the p̂ j s with j < 0 are defined to be the zero function and α j,i = 0 for i < 0.
Moreover, α j, j > 0 for j ≥ 0 as well as α j, j−β > 0 for j ≥ β.

Proof When β is an even positive integer, (2.2) is an inner product and the orthonormal
polynomials p̂ j of all degrees exist. This is also the case when β > 0 is odd and the
support of the measure dμ lives on the positive real axis. If β is an odd positive
integer and the support of dμ is not confined to the positive real axis, then (2.2) is a
bilinear form and some orthonormal polynomials p̂ j might not exist. This may lead to
a breakdown in the three-term recurrence relation for the p̂ j ; see, e.g., Brezinski et al.
[2] for techniques to overcome breakdown. Generically all orthonormal polynomials
p̂ j exist. We focus on this situation.

Let p j (t) = ∑ j
i=0 α j,i p̂i (t) and note that the coefficient

α j,i = 〈p j , p̂i 〉tβ

4

vanishes when the polynomial p̂i (t)tβ is of degree less than j . The sign of the coeffi-
cients α j, j and α j, j−β follows from the fact that both p j and p̂ j have positive leading
coefficients. 	

The orthonormal polynomials of Proposition 2.1 satisfy three-term recurrence rela-
tions. Let the entries of the symmetric (infinite) tridiagonal matrices T and T̂ be the
recurrence coefficients of the polynomials p j and p̂ j , respectively. If β is an even
positive integer, then T̂ can be determined from T by application of β/2 steps of the
QR algorithm to T ; see Kautsky and Golub [12] and Buhmann and Iserles [3] for
discussions. When T is positive definite and β > 0 is an odd integer, then one step of
the symmetric LR method is required to construct T̂ from T (in addition to (β − 1)/2
steps with the QR algorithm); see [12]. A recent discussion on how symmetric tridi-
agonal matrices whose entries are recursion coefficients for orthonormal polynomials
are changed when the measure is modified by a polynomial or rational function is
provided by Gautschi [7].

The remainder of this section discusses how the property of the polynomial families
described by Proposition 2.1 predicts the structure of the matrices of the reduced linear
discrete ill-posed problems generated by the MINRES(1) method during the iterations.
Introduce the spectral factorization

A = U�U T ,

where � = diag[λ1, λ2, . . . , λm] ∈ R
m×m and U ∈ R

m×m is orthogonal. Define the
unit vector b̆ = [b̆1, b̆2, . . . , b̆m]T := U T b. Then

(f, g) := bT f (A)g(A)b = b̆T f (�)g(�)b̆ =
m∑

j=1

f (λ j)g(λ j)b̆
2
j (2.5)

is an inner product for all polynomials f and g of sufficiently small degree. Precisely,
the sum of the degrees of f and g has to be strictly smaller than the number of distinct
eigenvalues λ j associated with positive weights b̆2

j . This requirement holds for linear
discrete ill-posed problems (1.1) of interest.

Application of k steps of the symmetric Lanczos process to the matrix A with initial
vector b yields the decomposition

AVk = Vk+1Tk+1,k, (2.6)

where the columns of the matrix Vk+1 = [v1, v2, . . . , vk+1] ∈ R
m×(k+1) form an

orthonormal basis for the Krylov subspace Kk+1(A, b) = span{b, Ab, . . . , Akb} with
v1 = b, the matrix Vk ∈ R

m×k is made up of the first k columns of Vk+1, and
the tridiagonal matrix Tk+1,k ∈ R

(k+1)×k has a leading k × k symmetric tridiagonal
submatrix Tk , positive subdiagonal entries, and a last row proportional to the vector eT

k .
Throughout this paper e j = [0, . . . , 0, 1, 0, . . . , 0]T denotes the j th canonical basis
vector of appropriate dimension. We refer to, e.g., Golub and Van Loan [8] or Saad
[20] for details on the symmetric Lanczos process. Here we assume that the number

5

of steps, k, is small enough so that the Lanczos decomposition (2.6) with the stated
properties exists; otherwise the relation (2.6) simplifies to

AVk = Vk Tk (2.7)

for some k, where Tk is a symmetric tridiagonal matrix. If Tk is fairly well-conditioned,
then we determine the exact solution of (1.1), given by x = Vk T −1

k e1. When Tk is
very ill-conditioned or singular, the small linear system of equations Tk y = e1‖b‖
should be regularized before solution. We will not dwell on this further, because it is
very unusual that the relation (2.7) holds for k � m.

Equation (2.6) is a recursion formula for the columns v j of the matrix Vk+1 and
shows that, for j = 1, 2, . . . , k + 1,

v j = p j−1(A)b (2.8)

for some polynomial p j−1 of degree j − 1. Therefore,

vT
j vi = bT p j−1(A)pi−1(A)b = (p j−1, pi−1), 1 ≤ j, i ≤ k + 1,

i.e., the polynomials p j , j = 0, 1, . . . , k, are orthonormal with respect to the inner
product (2.5), which is analogous to the inner product (2.2), but with only a discrete
finite point set on the real axis as support.

Similarly, k steps of the symmetric Lanczos process applied to A with initial vector
A�b/‖A�b‖ determines the decomposition

AV (�)
k = V (�)

k+1T (�)
k+1,k, (2.9)

where the columns of V (�)
k+1 = [v(�)

1 , v
(�)
2 , . . . , v

(�)
k+1] ∈ R

m×(k+1) form an orthonor-
mal basis for the Krylov subspace Kk+1(A, A�b) = span{A�b, A�+1b, . . . , A�+kb}.
Moreover, v

(�)
1 = A�b/‖A�b‖, the matrix V (�)

k ∈ R
m×k is made up of the first k

columns of V (�)
k+1, and T (�)

k+1,k ∈ R
(k+1)×k has a leading k × k symmetric tridiagonal

submatrix, which we denote by T (�)
k , and a last row proportional to the vector eT

k . We
assume that k is small enough so that the decomposition (2.9) with the stated properties
exists.

Analogously to (2.8), we obtain from (2.9) that, for j = 1, 2, . . . , k + 1,

v
(�)
j = p̂ j−1(A)A�b, (2.10)

for some polynomial p̂ j−1 of degree j − 1. Therefore,

(v
(�)
j)T v

(�)
i =bT A� p̂ j−1(A) p̂i−1(A)A�b= b̃T p̂ j−1(�) p̂i−1(�)�2�b̃

=
m∑

j=1

p̂ j−1(λ j) p̂i−1(λ j)λ
2�
j b̃2

j =: (p̂ j−1, p̂i−1)A2� , 1 ≤ j, i ≤k + 1,

6

i.e., the polynomials p̂ j , j = 0, 1, . . . , k, are orthonormal with respect to an inner
product analogous to (2.2) but with a finite discrete subset of the real axis as support.

The matrix V (1)
k in the Lanczos decomposition (2.9) with � = 1 can be computed

from the decomposition (2.6) without evaluating additional matrix-vector products
with A as follows. Introduce the QR factorization of the tridiagonal matrix Tk+1,k in
(2.6),

Tk+1,k = Q(1)
k+1 R(1)

k+1,k, (2.11)

where Q(1)
k+1 ∈ R

(k+1)×(k+1) is orthogonal and R(1)
k+1,k ∈ R

(k+1)×k has a leading k × k

upper triangular submatrix, R(1)
k , and a vanishing last row. The matrix Q(1)

k+1 can be
expressed as a product of k Givens rotations,

Q(1)
k+1 = G1G2 · · · Gk, (2.12)

where G j ∈ R
(k+1)×(k+1) is a rotation in the planes j and j + 1. Thus, G j is the

identity matrix except for a 2 × 2 block in the rows and columns j and j + 1. The
representation (2.12) shows that Q(1)

k+1 is upper Hessenberg. Moreover, the matrix

R(1)
k+1,k is banded with right half-bandwidth 2. The QR factorization (2.11) can be

computed in only O(k) arithmetic floating point operations (flops).
Let the matrix Q(1)

k+1,k ∈ R
(k+1)×k consist of the first k columns of Q(1)

k+1 and
introduce

W (1)
k = Vk+1 Q(1)

k+1,k . (2.13)

Since both the matrices Vk+1 and Q(1)
k+1,k have orthonormal columns, so does W (1)

k .
We obtain from (2.6) and (2.11) that

AVk = W (1)
k R(1)

k , (2.14)

which shows that R(W (1)
k) = Kk(A, Ab).

Proposition 2.2 Let the matrices W (1)
k and V (1)

k be defined by (2.13) and (2.9), respec-
tively. Then

W (1)
k e j = ±V (1)

k e j , 1 ≤ j ≤ k,

where the sign may vary with j .

Proof The leading upper triangular submatrix R(1)
k = [r (1)

i, j] ∈ R
k×k of R(1)

k+1,k in
(2.11) has nonvanishing diagonal entries, because all subdiagonal entries of the tridi-
agonal matrix Tk+1,k are positive. Identifying the first columns of the right-hand
side and left-hand side of (2.14) shows that W (1)

k e1 r (1)
1,1 = Av1. It follows that

W (1)
k e1 = ±Av1/‖Av1‖. Identifying the second columns of the right-hand side and

left-hand side of (2.14) yields that W (1)
k e2 lives in K2(A, Ab). Moreover, this vector is

7

orthogonal to Av1/‖Av1‖. These properties are shared by the unit vector v
(1)
2 , the sec-

ond column of V (1)
k . It follows that W (1)

k e2 = ±v
(1)
2 . We may proceed in this manner,

column by column, to show the proposition. 	

It follows from (2.14) that

V T
k AW (1)

k = L(1)
k , L(1)

k := (R(1)
k)T . (2.15)

Letting the polynomials p j−1 and p̂i−1 be defined by (2.8) and (2.10) with � = 1,
respectively, yields the coefficients

α j−1,i−1 = vT
j Av

(1)
i (2.16)

in the expansion (2.4). Fixing i , we obtain from Proposition 2.1 with β = 2 that

Av
(1)
i ∈ span{vi , vi+1, vi+2}.

Proposition 2.2 and (2.15) now yield

AW (1)
k = Vk+2 L(1)

k+2,k, (2.17)

where L(1)
k+2,k ∈ R

(k+2)×k is a lower triangular matrix with left half-bandwidth 2. The

matrix L(1)
k in (2.15) is the leading k × k submatrix of L(1)

k+2,k . The nontrivial entries
of the matrix are the nonvanishing coefficients (2.16). Specifically, we have

L(1)
k+2,k =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0,0 O
α1,0 α1,1
α2,0 α2,1 α2,2

α3.1 α3,2 α3,3
α4,2 α4,3 α4,4

. . .
. . .

. . .

αk,k−2 αk,k−1 αk,k

αk+1,k−1 αk+1,k

O αk+2,k

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.18)

Our solution method for the least-squares problem (2.1) for � = 1 uses the relation
(2.17). It differs from the solution method described in [15] in that it exploits both the
lower triangularity and the small bandwidth of L(1)

k+2,k .
We may proceed similarly to determine an analogue of the expression (2.17) with

W (1)
k replaced by a matrix W (2)

k ∈ R
n×k , whose columns form an orthonormal basis for

Kk(A, A2b), and the matrix L(1)
k+2,k replaced by a matrix with small bandwidth. This

analogue of (2.17) would be useful for the implementation of the MINRES(2) method.
However, we will not dwell on the details, because MINRES(2) generally does not
provide better approximations of x̂ than MINRES(1). This is illustrated in Sect. 4.

8

We finally remark that it is, of course, possible to derive the decomposition (2.17)
by linear algebra techniques only, i.e., without invoking Proposition 2.1. However,
the proposition provides insight into why a decomposition of the form (2.17) can be
expected to exist.

3 The MINRES(1) method

Substituting the decomposition (2.17) into (2.1) yields

min
y∈Rk

‖AW (1)
k y − b‖ = min

y∈Rk
‖Vk+2 L(1)

k+2,k y − b‖

= min
y∈Rk

‖L(1)
k+2,k y − e1‖b‖ ‖, (3.1)

where the last equality follows from the fact that Vk+2e1 = b/‖b‖. We first pro-
vide an outline of a progressive scheme for the computation of a sequence of iterates
x (1)

1 , x (1)
2 , x (1)

3 , Subsequently, we present an algorithm with details of the com-

putations. The initial iterate, x (1)
0 , is the zero vector.

Define the QR factorization

L(1)
k+2,k = Q̃k+2,k R̃k, (3.2)

where Q̃k+2,k ∈ R
(k+2)×k has orthonormal columns and R̃k ∈ R

k×k is upper trian-
gular and banded with upper half-bandwidth 2. This factorization can be computed in
only O(k) flops by applying a judiciously chosen sequence of elementary rotations.
Substituting (3.2) into (3.1) shows that this least-squares problem can be solved in
only O(k) flops provided that the matrix L(1)

k+2,k is available. The computations can

be carried out “progressively”, i.e., the iterate x (1)
k can be computed by updating the

previous iterate x (1)
k−1 in such a manner that only a few of the most recently generated

columns of the matrices Vk+2 and W (1)
k are required. Therefore, only a few m-vectors

have to be stored at any time during the iterations. In particular, the storage require-
ment of MINRES(1) can be bounded independently of the number of iterations. This
is similar as for the MINRES algorithm by Paige and Saunders [17] and follows from
the fact that the matrix L(1)

k+2,k is banded. The derivation requires the use of suitable
auxiliary vectors and is analogous to the derivation of the conjugate gradient method
from the Lanczos method described by Saad [20, p. 188] but somewhat more com-
plicated, because the matrix (2.18) has nontrivial subdiagonal and sub-subdiagonal
entries, while the tridiagonal matrix determined by the Lanczos method only has non-
trivial subdiagonal elements. We omit the details. Further comments on the storage
requirement are provided below.

The entry (j, k) of a matrix M is denoted by M j,k . We use MATLAB-inspired
notation. Thus, bi : j denotes the subvector of the vector b with entries bi , bi+1, . . . , b j ,
where we assume that i ≤ j . Similarly, Li : j,h:k denotes the submatrix of the matrix
L ∈ R

n×n made up of the entries Ls,t , i ≤ s ≤ j , h ≤ t ≤ k. Moreover, Li : j,:

9

denotes the submatrix consisting of the entries Ls,t with i ≤ s ≤ j and 1 ≤ t ≤ n. Let
α, β, γ, δ be real scalars. Then [α, β] denotes a row vector, [α; β] a column vector,
and [α, β; γ, δ] stands for the matrix

[
α β

γ δ

]
.

The symmetric tridiagonal matrix T generated by the Lanczos process has the diagonal
entries Tj, j = α j and subdiagonal entries Tj+1, j = β j , j = 1, 2, Thus, the
(k + 1)st column of T has the nontrivial entries (from top to bottom) βk, αk+1, βk+1.
The matrix Vk has the columns v1, v2, . . . , vk . Finally, 01:h,1:k denotes the zero matrix
of size h × k and 01:k stands for the zero column vector with k entries. The algorithm
does not assume that ‖b‖ = 1.

Algorithm 3.1 MINRES(1)

Input: A, b, number of iterations s.
Output: Approximate solutions x1, x2, . . . , xs of (1.1) and norm of
the associated residual vectors σk = ‖b − Axk‖, k = 1, 2, . . . , s.
% Initialization and first step of the Lanczos method
G := 01:2s,1:4; L := 01:s+2,1:s+1; R := 01:s+2,1:s ; b̃ = [‖b‖; 01:s+2];
v1 := b/‖b‖; v̂ := Av1;
α1 := vT

1 v̂; v̂ := v̂ − α1v1;
β1 := ‖v̂‖; v2 := v̂/β1;
T1,1 := α1; T2,1 = β1; L1:2,1 := T1:2,1;
for k = 1, 2, . . . , s do

% Compute new Lanczos vector vk+2 and column k + 1 of T
v̂ = Avk+1 − βkvk ;
αk+1 := vT

k+1v̂; v̂ := v̂ − αk+1vk+1;
βk+1 := ‖v̂‖; vk+2 := v̂/βk+1;
Lk:k+2,k+1 := Tk:k+2,k+1;
% Apply Givens rotation to columns k and k + 1 of T to determine the
% corresponding columns of L
ρ := (L2

k,k + L2
k,k+1)1/2; c := L2

k,k/ρ; s := L2
k,k+1/ρ;

Lk,k:k+1 = [cLk,k + sLk,k+1; 0]; Lk+1:k+2,k:k+1 = Lk+1:k+2,k:k+1[c, − s; s, c];
% Form vectors wk and ŵk , where wk is the kth column of the matrix W (1)

k in (2.14) and
% ŵk accumulates the Givens rotations of the previous columns
if k = 1 then

w1 := V:,1:2[c; s]; ŵ1 := V:,1:2[−s; c];
else

wk := cŵk−1 + sV:,k+1; ŵk := −sŵk−1 + cV:,k+1;
end
% Compute QR factorization of L
% Update new column L :,k by previous Givens rotations
if k = 2 then

L2:3,2 := [G1,1, G1,2; − G1,2, G1,1]L2:3,2;
L1:2,2 := [G1,3, G1,4; − G1,4, G1,3]L1:2,2;

else
if k > 2 then

for i = k − 2 : k − 1 do
Li+1:i+2,k := [Gi,1, Gi,2; − Gi,2, Gi,1]Li+1:i+2,k ;
Li :i+1,k := [Gi,3, Gi,4; − Gi,4, Gi,3]Li :i+1,k ;

end
end

end

10

R1:k,k := L1:k,k ;
% Apply Givens rotations to rows k + 1 and k + 2 of L to determine the
% corresponding rows of R
μ := (L2

k+1,k + L2
k+2,k)1/2; c := Lk+1,k/μ; s := Lk+2,k/μ; Gk,1:2 := [c, s];

Rk+1,k := cLk+1,k + sLk+2,k ;

μ := (R2
k,k + R2

k+1,k)1/2; c := Rk,k/μ; s := Lk+1,k/μ; Gk,3:4 := [c, s];
Rk:k+1,k := [cRk,k + s Rk+1,k ; 0];
% Update right-hand side b̃
b̃k:k+1 := [c, s; − s, c]b̃k:k+1;
% Compute the approximate solutions x1 or xk when k > 1. The latter
% approximate solution is computed by updating xk−1
if k = 1 then

z1 := w1/R1,1; x1 := b̃k z1;
elseif k = 2 then

zk := (wk − Rk−1,k zk−1)/Rk,k ;
else

zk := (wk − Rk−2,k zk−2 − Rk−1,k zk−1)/Rk,k ;
end

end
if k > 1 then

xk := xk−1 + b̃k zk ;
end
σk := |b̃k+1|;

end

Many of the vectors in the algorithm can be overwritten to save storage. For instance,
all iterates xk can share the same storage. A careful implementation of the above algo-
rithm requires storage of at most nine m-vectors, only, independently of the number
of iterations s. When the algorithm is applied with the discrepancy principle, defined
in the following section, it is not known a priori how many iterations will be carried
out. We then can choose a sufficiently large value of s when allocating storage in the
initialization phase of the algorithm. For most problems of practical interest s = 30
suffices. This is illustrated by the computed examples of Sect. 4. Alternatively, one eas-
ily can modify the algorithm to allocate storage dynamically during execution, and in
this manner avoid the necessity to allocate zero matrices before execution. Moreover,
some of the zero matrices can be reduced or avoided altogether by reusing storage.

4 Computed examples

This section presents a few numerical examples produced with Algorithm 3.1. We
compare this algorithm with the MATLAB code sym_rrgmres_dp from [16]. This
software is described in Section 3 of [15]. Comparisons of sym_rrgmres_dp to the
Orthodir implementation used in [9] and to an implementation described in [4] are
presented in [15], and show the software in [16] to often require fewer iterations to
determine an approximation of x̂ with desired accuracy than the other methods. The
reason for the superior performance of the software sym_rrgmres_dp depends on
that the method is less sensitive to round-off errors introduced during the computation
than the other methods in the comparison. The computed examples in this section
illustrate that Algorithm 3.1 performs as well as the software [16] and, therefore, is
competitive with the methods described in [4,9]. Moreover, Algorithm 3.1 requires

11

less computer storage and fewer arithmetic floating point operations than the imple-
mentation [16]. The storage demand of the implementations sym_rrgmres_dp and
sym_rrgmres_iter from [16] of Algorithm 3.1 in [15] is proportional to sm, where
s is the number of iterations carried out. The lower storage requirement of Algorithm
3.11 is its most attractive feature, but we point out that its flop count for carrying
out s iterations is somewhat smaller than for the software sym_rrgmres_dp and
sym_rrgmres_iter. The main purpose of the computed examples is to illustrate that
the accuracy achieved and the number of iterations required by Algorithm 3.1 is about
the same as with the software in [16]. All computations were carried out in MATLAB
with about 15 significant decimal digits.

Example 4.1 Let the matrix A be obtained by discretizing the integral equation

π/2∫

−π/2

κ(τ, σ)x(σ)dσ = b(τ), −π

2
≤ τ ≤ π

2
, (4.1)

where

κ(σ, τ) = (cos(σ) + cos(τ))

(
sin(ξ)

ξ

)2

, ξ = π(sin(σ) + sin(τ)).

The right-hand side function b(τ) is chosen so that the solution x(σ) is the sum of two
Gaussian functions. This integral equation is discussed by Shaw [21]. We discretize
it with the code shaw from [10], using a quadrature rule with 200 nodes. This yields
a symmetric matrix A ∈ R

200×200 and a scaled discretized solution x̂ ∈ R
200 of

(4.1), from which we determine b̂ = Ax̂ . A “noise vector” e ∈ R
200 with normally

distributed random entries with zero mean, and scaled to correspond to a specified
noise level

ν = ‖e‖
‖x̂‖

is added to b̂ to give the contaminated right-hand side in (1.1); cf. (1.2).
The iterations are terminated with the discrepancy principle, i.e., as soon as an

iterate xk has been determined that satisfies

‖Axk − b‖ ≤ ‖e‖.

Table 1 shows the number of iterations required as well as the relative error in the
computed approximate solution xk of (1.1). The table reports results both for Algorithm
3.1 and for the method implemented by the software [16]. The number of iterations
and the error in the computed approximate solutions xk determined by these schemes
is seen to be almost the same. 	

1 Algorithm 3.1 refers to the algorithm in Section 3 unless explicitly stated otherwise.

12

Table 1 Example 4.1: Number
of iterations k and relative error
in iterate xk determined with the
discrepancy principle for
Algorithm 3.1 and the software
sym_rrgmres_dp from [16] for
different noise levels ν

Implementation ν # Iterations k ‖xk − x̂‖/‖x̂‖

Algorithm 3.1 1 × 10−1 4 1.67 × 10−1

Software from [16] 1 × 10−1 4 1.67 × 10−1

Algorithm 3.1 1 × 10−2 5 1.31 × 10−1

Software from [16] 1 × 10−2 5 1.31 × 10−1

Algorithm 3.1 1 × 10−4 10 3.67 × 10−2

Software from [16] 1 × 10−4 10 3.67 × 10−2

Algorithm 3.1 1 × 10−6 15 1.95 × 10−2

Software from [16] 1 × 10−6 15 1.95 × 10−2

Algorithm 3.1 1 × 10−8 26 7.16 × 10−3

Software from [16] 1 × 10−8 26 7.16 × 10−3

Algorithm 3.1 1 × 10−10 38 3.68 × 10−3

Software from [16] 1 × 10−10 38 3.68 × 10−3

Example 4.2 Consider the Fredholm integral equation of the first kind

6∫

−6

κ(t, s)x(s)ds = b(t), −6 ≤ t ≤ 6, (4.2)

discussed by Phillips [18]. Its solution, kernel, and right-hand side are given by

x(s) =
{

1 + cos(π
3 s), if|s| < 3,

0, otherwise,

κ(t, s) = x(t − s),

b(t) = (6 − |t |)
(

1 + 1

2
cos

(π

3
t
))

+ 9

2π
sin

(π

3
|t |

)
.

We discretize this integral equation by a Galerkin method using orthonormal box
functions. This discretization is computed with the function phillips from [10], which
determines a symmetric matrix A ∈ R

200×200 and a scaled discretization x̂ ∈ R
200

of the solution of (4.2), with which we determine the error-free right-hand side vector
b̂ = Ax̂ . The contaminated right-hand side b ∈ R

200 is defined analogously as in
Example 4.1.

Table 2 displays the performance of Algorithm 3.1 and the software [16]. The itera-
tions are terminated by the discrepancy principle. Algorithm 3.1 is seen to require about
the same number of iterations as the implementation sym_rrgmres_dp from [16]. 	

Example 4.3 We consider the restoration of a 300 × 300-pixel image that has been
contaminated by blur and noise. The pixel values are stored column-wise in a vector
b ∈ R

90000. The blur is Gaussian and described by the matrix A ∈ R
90000×90000,

which is generated with the function blur from [10] using the parameters sigma= 1
and band= 7. Here sigma controls the width of the Gaussian point spread function

13

Table 2 Example 4.2: Number
of iterations k and relative error
in iterate xk determined with the
discrepancy principle for
Algorithm 3.1 and the software
sym_rrgmres_dp from [16] for
different noise levels ν

Implementation ν # Iterations k ‖xk − x̂‖/‖x̂‖

Algorithm 3.1 1 × 10−2 4 2.59 × 10−2

Software from [16] 1 × 10−2 4 2.59 × 10−2

Algorithm 3.1 1 × 10−3 8 1.16 × 10−2

Software from [16] 1 × 10−3 8 1.16 × 10−2

Algorithm 3.1 1 × 10−4 11 5.45 × 10−3

Software from [16] 1 × 10−4 11 5.45 × 10−3

Algorithm 3.1 1 × 10−6 29 7.65 × 10−4

Software from [16] 1 × 10−6 29 7.65 × 10−4

Algorithm 3.1 1 × 10−8 95 1.04 × 10−4

Software from [16] 1 × 10−8 94 1.07 × 10−4

Algorithm 3.1 1 × 10−10 201 3.85 × 10−5

Software from [16] 1 × 10−10 200 3.87 × 10−5

Fig. 1 Desired blur- and
noise-free image “Axel”

and band specifies the bandwidth. The matrix A is a symmetric block Toeplitz matrix
with Toeplitz blocks. Let the vector e ∈ R

90000 represent the noise in b. We let e have
normally distributed random entries with zero mean, and be scaled to correspond to
the noise level 0.1%. Finally, let x̂ ∈ R

90000 represent the (unknown) desired image.
Then b satisfies

b = Ax̂ + e.

Figure 1 displays the desired blur and noise-free image represented by the vector x̂
and Fig. 2 shows the available blur- and noise-contaminated image represented by the
vector b.

14

Fig. 2 Blur- and
noise-contaminated image

Fig. 3 Image restored by
MINRES(1)

Table 3 Relative errors in
iterates determined with the
discrepancy principle

Iterative method Relative error in iterates

MINRES(0) ‖x(0)
11 − x̂‖/‖x̂‖ = 9.08 × 10−2

MINRES(1) ‖x(1)
18 − x̂‖/‖x̂‖ = 8.54 × 10−2

MINRES(2) ‖x(2)
25 − x̂‖/‖x̂‖ = 8.61 × 10−2

The iterative solution of (1.1) with A and b defined as described yields approxima-
tions xk , k = 1, 2, 3, . . . , of the desired image x̂ . The discrepancy principle yields the
iterate x18 as our approximation of x̂ . Figure 3 shows the image represented by x18.

We conclude this example with an illustration of the MINRES(�) iterative methods
for � �= 1; cf. (2.1). The number of iterations required by MINRES(�) to produce an
iterate that satisfies the discrepancy principle typically increases with �. This is illus-
trated by Table 3. The MINRES(0) iterates determined by the discrepancy principle

15

Table 4 Relative errors in
iterates that best approximate x̂

Iterative method Relative error in iterates

MINRES(0) ‖x(0)
9 − x̂‖/‖x̂‖ = 8.88 × 10−2

MINRES(1) ‖x(1)
28 − x̂‖/‖x̂‖ = 8.27 × 10−2

MINRES(2) ‖x(2)
40 − x̂‖/‖x̂‖ = 8.30 × 10−2

typically do not approximate x̂ as well as the corresponding iterates computed with
MINRES(1). This depends on that the iterates computed by MINRES(1) are orthog-
onal to N (A), while iterates determined by MINRES(0) generally are not. Hanke
[9] provides an analysis in a Hilbert space setting that shows that MINRES(1) is a
regularization method in a well-defined sense, while MINRES(0) is not. The iterates
generated by MINRES(�) with � > 1 also are orthogonal to N (A), but Tables 3
and 4, as well as other computed examples, indicate that the quality of the computed
approximate solutions, generally, is not improved by using MINRES(�) with � > 1
instead of MINRES(1).

The discrepancy principle is not guaranteed to determine the iterate that best approx-
imates x̂ . Table 4 shows the relative errors in the best approximations of x̂ determined
by MINRES(�) for � ∈ {0, 1, 2}. Again, MINRES(0) yields the least accurate approx-
imation and MINRES(1) the best one. 	

5 Conclusion

We discussed the structure of the matrices that arise in minimal residual methods for
the iterative solution of linear discrete ill-posed problems with a symmetric matrix.
The exploitation of the structure made it possible to present a new algorithm that
requires less storage and achieves the same accuracy as the best available methods in
the literature.

Acknowledgments We would like to thank the referees for comments. The work of F. M. was supported
by Dirección General de Investigación Científica y Técnica, Ministerio de Economía y Competitividad of
Spain under grant MTM2012-36732-C03-01. Work of L. R. was supported by Universidad Carlos III de
Madrid in the Department of Mathematics during the academic year 2010-2011 within the framework of
the Chair of Excellence Program and by NSF grant DMS-1115385.

References

1. Brezinski, C., Redivo-Zaglia, M., Rodriguez, G., Seatzu, S.: Multi-parameter regularization techniques
for ill-conditioned linear systems. Numer. Math. 94, 203–228 (2003)

2. Brezinski, C., Redivo-Zaglia, M., Sadok, H.: New look-ahead Lanczos-type algorithms for linear
systems. Numer. Math. 83, 53–85 (1999)

3. Buhmann, M.D., Iserles, A.: On orthogonal polynomials transformed by the QR algorithm. J. Comput.
Appl. Math. 43, 117–134 (1992)

4. Calvetti, D., Lewis, B., Reichel, L.: On the choice of subspace for iterative methods for linear discrete
ill-posed problems. Int. J. Appl. Math. Comput. Sci. 11, 1069–1092 (2001)

5. Calvetti, D., Reichel, L., Zhang, Q.: Conjugate gradient algorithms for symmetric inconsistent linear
systems. In: Brown, J.D., Chu, M.T., Ellison, D.C., Plemmons, R. J. (ed.) Proceedings of the Cornelius
Lanczos International Centenary Conference, pp. 267–272. SIAM, Philadelphia (1994)

16

6. Dykes, L., Reichel, L.: A family of range restricted iterative methods for linear discrete ill-posed
problems. Dolomites Res Notes Approx 6, 27–36 (2013)

7. Gautschi, W.: Orthogonal polynomials: computation and approximation. Oxford University Press,
Oxford (2004)

8. Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. Johns Hopkins University Press, Baltimore
(2013)

9. Hanke, M.: Conjugate gradient type methods for Ill-posed problems. Longman, Harlow (1995)
10. Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)
11. Hansen, P.C., Jensen, T.K.: Noise propagation in regularizing iterations for image deblurring. Electron.

Trans. Numer. Anal. 31, 204–220 (2008)
12. Kautsky, J., Golub, G.H.: On the calculation of Jacobi matrices. Linear Algebra Appl. 52–53, 439–455

(1983)
13. Kindermann, S.: Convergence analysis of minimization-based noise level free parameter choice rules

for linear ill-posed problems. Electron. Trans. Numer. Anal. 38, 233–257 (2011)
14. Morigi, S., Reichel, L., Sgallari, F., Zama, F.: Iterative methods for ill-posed problems and semicon-

vergent sequences. J. Comput. Appl. Math. 193, 157–167 (2006)
15. Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear

discrete ill-posed problems. Linear Algebra Appl. 436, 3974–3990 (2012)
16. Neuman, A., Reichel, L., Sadok, H.: Algorithms for range restricted iterative methods for linear discrete

ill-posed problems. Numer. Algorithms 59, 325–331 (2012)
17. Paige, C.C., Saunders, M.A.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer.

Anal. 12, 617–629 (1975)
18. Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J.

ACM 9, 84–97 (1962)
19. Reichel, L., Rodriguez, G.: Old and new parameter choice rules for discrete ill-posed problems. Numer.

Algorithms 63, 65–87 (2013)
20. Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia (2003)
21. Shaw Jr, C.B.: Improvements of the resolution of an instrument by numerical solution of an integral

equation. J. Math. Anal. Appl. 37, 83–112 (1972)

17

