985 research outputs found
Validity and reproducibility of morphologic analysis of nasal secretions obtained using ultrasonic nebulization of hypertonic solution.
BACKGROUND:
Collection of nasal secretions is important for the evaluation of upper airways inflammation in many nasal disorders.
OBJECTIVE:
To study the validity and reproducibility of nasal secretion cellularity induced by nebulization of hypertonic solution in patients with allergic rhinitis (AR), patients with nonallergic rhinitis with eosinophilia syndrome (NARES), and control subjects.
METHODS:
Sixty-eight individuals (29 with AR [mean +/- SD age, 33.3 +/- 16.9 years], 23 with NARES [mean +/- SD age, 46.4 +/- 16.6 years], and 16 controls [mean +/- SD age, 42.1 +/- 15.1 years]) underwent ultrasonic nebulization of hypertonic (4.5%) saline solution on 2 different occasions to study the validity and reproducibility of total and differential cell counts of nasal secretions.
RESULTS:
The mean +/- SD percentage of eosinophils was significantly higher in samples from patients with AR (20.8% +/- 23.1%) and NARES (18.7% +/- 22.8%) than in samples from controls (0.6% +/- 0.6%; P < .001 for both). There was a significant correlation between 2 samples of nasal secretions obtained on 2 different occasions for percentages of macrophages, neutrophils, eosinophils, and epithelial cells.
CONCLUSIONS:
The analysis of nasal secretions obtained using ultrasonic nebulization of hypertonic solution can distinguish patients with AR and NARES from controls. The reproducibility of this technique is good for macrophages, neutrophils, eosinophils, and epithelial cells. This method could be used to detect nasal airway inflammation in clinical settings
Gravitational sliding of the Mt. Etna massif along a sloping basement
Geological field evidence and laboratory modelling indicate that volcanoes constructed on slopes slide downhill. If this happens on an active volcano, then the movement will distort deformation data and thus potentially compromise interpretation. Our recent GPS measurements demonstrate that the entire edifice of Mt. Etna is sliding to the ESE, the overall direction of slope of its complex, rough sedimentary basement. We report methods of discriminating the sliding vector from other deformation processes and of measuring its velocity, which averaged 14 mm year−1 during four intervals between 2001 and 2012. Though sliding of one sector of a volcano due to flank instability is widespread and well-known, this is the first time basement sliding of an entire active volcano has been directly observed. This is important because the geological record shows that such sliding volcanoes are prone to devastating sector collapse on the downslope side, and whole volcano migration should be taken into account when assessing future collapse hazard. It is also important in eruption forecasting, as the sliding vector needs to be allowed for when interpreting deformation events that take place above the sliding basement within the superstructure of the active volcano, as might occur with dyke intrusion or inflation/deflation episodes
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Search for rare quark-annihilation decays, B --> Ds(*) Phi
We report on searches for B- --> Ds- Phi and B- --> Ds*- Phi. In the context
of the Standard Model, these decays are expected to be highly suppressed since
they proceed through annihilation of the b and u-bar quarks in the B- meson.
Our results are based on 234 million Upsilon(4S) --> B Bbar decays collected
with the BABAR detector at SLAC. We find no evidence for these decays, and we
set Bayesian 90% confidence level upper limits on the branching fractions BF(B-
--> Ds- Phi) Ds*- Phi)<1.2x10^(-5). These results
are consistent with Standard Model expectations.Comment: 8 pages, 3 postscript figues, submitted to Phys. Rev. D (Rapid
Communications
Sub-microscopic malaria cases and mixed malaria infection in a remote area of high malaria endemicity in Rattanakiri province, Cambodia: implication for malaria elimination
BACKGROUND: Malaria microscopy and rapid diagnostic tests are insensitive for very low-density parasitaemia. This insensitivity may lead to missed asymptomatic sub-microscopic parasitaemia, a potential reservoir for infection. Similarly, mixed infections and interactions between Plasmodium species may be missed. The objectives were first to develop a rapid and sensitive PCR-based diagnostic method to detect low parasitaemia and mixed infections, and then to investigate the epidemiological importance of sub-microscopic and mixed infections in Rattanakiri Province, Cambodia. METHODS: A new malaria diagnostic method, using restriction fragment length polymorphism analysis of the cytochrome b genes of the four human Plasmodium species and denaturing high performance liquid chromatography, has been developed. The results of this RFLP-dHPLC method have been compared to 1) traditional nested PCR amplification of the 18S rRNA gene, 2) sequencing of the amplified fragments of the cytochrome b gene and 3) microscopy. Blood spots on filter paper and Giemsa-stained blood thick smears collected in 2001 from 1,356 inhabitants of eight villages of Rattanakiri Province have been analysed by the RFLP-dHPLC method and microscopy to assess the prevalence of sub-microscopic and mixed infections. RESULTS: The sensitivity and specificity of the new RFLP-dHPLC was similar to that of the other molecular methods. The RFLP-dHPLC method was more sensitive and specific than microscopy, particularly for detecting low-level parasitaemia and mixed infections. In Rattanakiri Province, the prevalences of Plasmodium falciparum and Plasmodium vivax were approximately two-fold and three-fold higher, respectively, by RFLP-dHPLC (59% and 15%, respectively) than by microscopy (28% and 5%, respectively). In addition, Plasmodium ovale and Plasmodium malariae were never detected by microscopy, while they were detected by RFLP-dHPLC, in 11.2% and 1.3% of the blood samples, respectively. Moreover, the proportion of mixed infections detected by RFLP-dHPLC was higher (23%) than with microscopy (8%). CONCLUSIONS: The rapid and sensitive molecular diagnosis method developed here could be considered for mass screening and ACT treatment of inhabitants of low-endemicity areas of Southeast Asia
Effects of immunomodulatory treatment with subcutaneous interferon beta-1a oncognitive decline in mildly disabled patients with relapsing-remitting multiple sclerosis
The objective of this study was to assess the effects of subcutaneous (sc) interferon beta-1a (IFNbeta-1a) on cognition in mildly disabled patients with relapsing-remitting multiple sclerosis (RRMS). Patients aged 18-50 years with RRMS (McDonald criteria; Expanded Disability Status Scale score <or=4.0) were assigned IFNbeta therapy at the physician's discretion and underwent standardized magnetic resonance imaging, neurological examination and neuropsychological testing at the baseline and regular intervals for up to three years. This analysis included 459 patients who received sc IFNbeta-1a (44 mcg: n = 236; 22 mcg: n = 223; three-year follow up was available for 318 patients). The hazard ratio for cognitive impairment over three years (44 mcg versus 22 mcg) was 0.68 (95% confidence interval [CI]: 0.480-0.972), suggesting a 32% lower risk with the higher dose treatment. At year 3, the proportion of patients who were cognitively impaired increased slightly from 23.5% at the baseline to 24.8% in the IFNbeta-1a 22 mcg treatment group, but remained stable at 15.2% in the IFNbeta-1a 44 mcg treatment group. The proportion of patients with cognitive impairment at year 3 was significantly higher in the 22 mcg group than in the 44 mcg group (P = 0.03), although a trend was also seen at the baseline (P = 0.058). Multivariate logistic regression (corrected for baseline cognitive deficits) indicated that treatment with the higher dose of IFNbeta-1a was predictive of lower cognitive impairment at three years (odds ratio: 0.51, 95% CI: 0.26-0.99) compared with the lower dose of IFNbeta-1a. These findings suggest that sc IFNbeta-1a may have dose-dependent cognitive benefits in mildly disabled patients with RRMS, and may support early initiation of high-dose IFNbeta-1a treatment
Task-Specific Codes for Face Recognition: How they Shape the Neural Representation of Features for Detection and Individuation
The variety of ways in which faces are categorized makes face recognition challenging for both synthetic and biological vision systems. Here we focus on two face processing tasks, detection and individuation, and explore whether differences in task demands lead to differences both in the features most effective for automatic recognition and in the featural codes recruited by neural processing.Our study appeals to a computational framework characterizing the features representing object categories as sets of overlapping image fragments. Within this framework, we assess the extent to which task-relevant information differs across image fragments. Based on objective differences we find among task-specific representations, we test the sensitivity of the human visual system to these different face descriptions independently of one another. Both behavior and functional magnetic resonance imaging reveal effects elicited by objective task-specific levels of information. Behaviorally, recognition performance with image fragments improves with increasing task-specific information carried by different face fragments. Neurally, this sensitivity to the two tasks manifests as differential localization of neural responses across the ventral visual pathway. Fragments diagnostic for detection evoke larger neural responses than non-diagnostic ones in the right posterior fusiform gyrus and bilaterally in the inferior occipital gyrus. In contrast, fragments diagnostic for individuation evoke larger responses than non-diagnostic ones in the anterior inferior temporal gyrus. Finally, for individuation only, pattern analysis reveals sensitivity to task-specific information within the right "fusiform face area".OUR RESULTS DEMONSTRATE: 1) information diagnostic for face detection and individuation is roughly separable; 2) the human visual system is independently sensitive to both types of information; 3) neural responses differ according to the type of task-relevant information considered. More generally, these findings provide evidence for the computational utility and the neural validity of fragment-based visual representation and recognition
- …