176 research outputs found

    A photometric search for transients in galaxy clusters

    Full text link
    We have begun a program to search for supernovae and other transients in the fields of galaxy clusters with the 2.3m Bok Telescope on Kitt Peak. We present our automated photometric methods for data reduction, efficiency characterization, and initial spectroscopy. With this program, we aim to ultimately identify \sim25-35 cluster SN Ia (\sim10 of which will be intracluster, hostless events) and constrain the SN Ia rate associated with old, passive stellar populations. With these measurements we will constrain the relative contribution of hostless and hosted SN Ia to the metal enrichment of the intracluster medium. In the current work, we have identified a central excess of transient events within 1.25r2001.25 r_{200} in our cluster fields after statistically subtracting out the 'background' transient rate taken from an off-cluster CCD chip. Based on the published rate of SN Ia for cluster populations we estimate that \sim20 percent of the excess cluster transients are due to cluster SN Ia, a comparable fraction to core collapse (CC) supernovae and the remaining are likely to be active galactic nuclei. Interestingly, we have identified three intracluster SN candidates, all of which lay beyond R>r200R>r_{200}. These events, if truly associated with the cluster, indicate a large deficit of intracluster (IC) SN at smaller radii, and may be associated with the IC stars of infalling groups or indicate that the intracluster light (ICL) in the cluster outskirts is actively forming stars which contribute CC SN or prompt SN Ia.Comment: Updated to match accepted version; 26 pages, 14 figures, AJ accepte

    Escape path complexity and its context dependency in Pacific blue-eyes (Pseudomugil signifer)

    Get PDF
    The escape paths prey animals take following a predatory attack appear to be highly unpredictable - a property that has been described as ‘protean behaviour’. Here we present a method of quantifying the escape paths of individual animals using a path complexity approach. When individual fish (Pseudomugil signifer) were attacked, we found that a fish's movement path rapidly increased in complexity following the attack. This path complexity remained elevated (indicating a more unpredictable path) for a sustained period (at least 10 seconds) after the attack. The complexity of the path was context dependent; paths were more complex when attacks were made closer to the fish, suggesting that these responses are tailored to the perceived level of threat. We separated out the components of speed and turning rate changes to determine which of these components contributed to the overall increase in path complexity following an attack. We found that both speed and turning rate measures contributed similarly to an individual's path complexity in absolute terms. Overall, our work highlights the context dependent escape responses that animals use to avoid predators and also provides a method for quantifying the escape paths of animals

    Metabolic resilience of the Australasian snapper (Chrysophrys auratus) to marine heatwaves and hypoxia

    Get PDF
    Marine organisms are under threat from a simultaneous combination of climate change stressors, including warming sea surface temperatures (SST), marine heatwave (MHW) episodes, and hypoxic events. This study sought to investigate the impacts of these stressors on the Australasian snapper (C. auratus) — a finfish species of high commercial and recreational importance, from the largest snapper fishery in Aotearoa New Zealand (SNA1). A MHW scenario was simulated from 21°C (current February SST average for north-eastern New Zealand) to a future predicted level of 25°C, with the whole-animal and mitochondrial metabolic performance of snapper in response to hypoxia and elevated temperature tested after 1-, 10-, and 30-days of thermal challenge. It was hypothesised that key indicators of snapper metabolic performance would decline after 1-day of MHW stress, but that partial recovery might arise as result of thermal plasticity after chronic (e.g., 30-day) exposures. In contrast to this hypothesis, snapper performance remained high throughout the MHW: 1) Aerobic metabolic scope increased after 1-day of 25°C exposure and remained high. 2) Hypoxia tolerance, measured as the critical O2 pressure and O2 pressure where loss of equilibrium occurred, declined after 1-day of warm-acclimation, but recovered quickly with no observable difference from the 21°C control following 30-days at 25°C. 3) The performance of snapper mitochondria was also maintained, with oxidative phosphorylation respiration and proton leak flux across the inner mitochondrial membrane of the heart remaining mostly unaffected. Collectively, the results suggest that heart mitochondria displayed resilience, or plasticity, in snapper chronically exposed to 25°C. Therefore, contrary to the notion of climate change having adverse metabolic effects, future temperatures approaching 25°C may be tolerated by C. auratus in Northern New Zealand. Even in conjunction with supplementary hypoxia, 25°C appears to represent a metabolically optimal temperature for this species

    Acidosis Maintains the Function of Brain Mitochondria in Hypoxia-Tolerant Triplefin Fish: A Strategy to Survive Acute Hypoxic Exposure?

    Get PDF
    The vertebrate brain is generally very sensitive to acidosis, so a hypoxia-induced decrease in pH is likely to have an effect on brain mitochondria (mt). Mitochondrial respiration (JO2) is required to generate an electrical gradient (ΔΨm) and a pH gradient to power ATP synthesis, yet the impact of pH modulation on brain mt function remains largely unexplored. As intertidal fishes within rock pools routinely experience hypoxia and reoxygenation, they would most likely experience changes in cellular pH. We hence compared four New Zealand triplefin fish species ranging from intertidal hypoxia-tolerant species (HTS) to subtidal hypoxia-sensitive species (HSS). We predicted that HTS would tolerate acidosis better than HSS in terms of sustaining mt structure and function. Using respirometers coupled to fluorimeters and pH electrodes, we titrated lactic-acid to decrease the pH of the media, and simultaneously recorded JO2, ΔΨm, and H+ buffering capacities within permeabilized brain and swelling of mt isolated from non-permeabilized brains. We then measured ATP synthesis rates in the most HTS (Bellapiscus medius) and the HSS (Forsterygion varium) at pH 7.25 and 6.65. Mitochondria from HTS brain did have greater H+ buffering capacities than HSS mt (∼10 mU pH.mgprotein-1). HTS mt swelled by 40% when exposed to a decrease of 1.5 pH units, and JO2 was depressed by up to 15% in HTS. However, HTS were able to maintain ΔΨm near -120 mV. Estimates of work, in terms of charges moved across the mt inner-membrane, suggested that with acidosis, HTS mt may in part harness extra-mt H+ to maintain ΔΨm, and could therefore support ATP production. This was confirmed with elevated ATP synthesis rates and enhanced P:O ratios at pH 6.65 relative to pH 7.25. In contrast, mt volumes and ΔΨm decreased downward pH 6.9 in HSS mt and paradoxically, JO2 increased (∼25%) but ATP synthesis and P:O ratios were depressed at pH 6.65. This indicates a loss of coupling in the HSS with acidosis. Overall, the mt of these intertidal fish have adaptations that enhance ATP synthesis efficiency under acidic conditions such as those that occur in hypoxic or reoxygenated brain

    Macrophage-derived human resistin is induced in multiple helminth infections and promotes inflammatory monocytes and increased parasite burden.

    Get PDF
    Parasitic helminth infections can be associated with lifelong morbidity such as immune-mediated organ failure. A better understanding of the host immune response to helminths could provide new avenues to promote parasite clearance and/or alleviate infection-associated morbidity. Murine resistin-like molecules (RELM) exhibit pleiotropic functions following helminth infection including modulating the host immune response; however, the relevance of human RELM proteins in helminth infection is unknown. To examine the function of human resistin (hResistin), we utilized transgenic mice expressing the human resistin gene (hRetnTg+). Following infection with the helminth Nippostrongylus brasiliensis (Nb), hResistin expression was significantly upregulated in infected tissue. Compared to control hRetnTg- mice, hRetnTg+ mice suffered from exacerbated Nb-induced inflammation characterized by weight loss and increased infiltration of inflammatory monocytes in the lung, along with elevated Nb egg burdens and delayed parasite expulsion. Genome-wide transcriptional profiling of the infected tissue revealed that hResistin promoted expression of proinflammatory cytokines and genes downstream of toll-like receptor signaling. Moreover, hResistin preferentially bound lung monocytes, and exogenous treatment of mice with recombinant hResistin promoted monocyte recruitment and proinflammatory cytokine expression. In human studies, increased serum resistin was associated with higher parasite load in individuals infected with soil-transmitted helminths or filarial nematode Wuchereria bancrofti, and was positively correlated with proinflammatory cytokines. Together, these studies identify human resistin as a detrimental factor induced by multiple helminth infections, where it promotes proinflammatory cytokines and impedes parasite clearance. Targeting the resistin/proinflammatory cytokine immune axis may provide new diagnostic or treatment strategies for helminth infection and associated immune-mediated pathology

    The oddity effect drives prey choice but not necessarily attack time

    Get PDF
    The tendency of predators to preferentially attack phenotypically odd prey in groups (the oddity effect) is a clear example of how predator cognition can impact behaviour and morphology in prey. Through targeting phenotypically odd prey, predators are thought to avoid the cognitive constraints that delay and limit the success of attacks on homogenous prey groups (the confusion effect). In addition to influencing which prey a predator will attack, the confusion and oddity effects would also predict that attacks on odd prey can occur more rapidly than attacking the majority prey type, as odd prey are more easily targeted, but this prediction has yet to be tested. Here, we used kerri tetra fish, Inpaichthys kerri, presented with mixed phenotypic groups of Daphnia dyed red or black to investigate whether odd prey in groups are preferentially attacked and whether these attacks were faster than those on the majority prey type. In agreement with previous work, odd prey were targeted and attacked more often than expected from their frequency in the prey groups, regardless of whether the odd prey was red in a group of black prey or vice versa. However, no difference was found in the time taken to attack odd vs. majority prey items, contrary to our predictions. Our results suggest that the time taken to make an attack is determined by a wider range of factors or is subject to greater variance than the choice of which prey is selectively targeted in a group

    Trefoil factor 2 rapidly induces interleukin 33 to promote type 2 immunity during allergic asthma and hookworm infection

    Get PDF
    The molecular mechanisms that drive mucosal T helper type 2 (T[subscript H]2) responses against parasitic helminths and allergens remain unclear. In this study, we demonstrate in mice that TFF2 (trefoil factor 2), an epithelial cell–derived repair molecule, is needed for the control of lung injury caused by the hookworm parasite Nippostrongylus brasiliensis and for type 2 immunity after infection. TFF2 is also necessary for the rapid production of IL-33, a T[subscript H]2-promoting cytokine, by lung epithelia, alveolar macrophages, and inflammatory dendritic cells in infected mice. TFF2 also increases the severity of allergic lung disease caused by house dust mite antigens or IL-13. Moreover, TFF2 messenger RNA expression is significantly increased in nasal mucosal brushings during asthma exacerbations in children. These experiments extend the biological functions of TFF2 from tissue repair to the initiation and maintenance of mucosal T[subscript H]2 responses

    The compound machinery of government: The case of seconded officials in the European commission

    Get PDF
    This article explores the compound machinery of government. Attention is directed toward decision making within the core executive of the European Union - the European Commission. The article studies seconded national civil servants (SNEs) hired on short-term contracts. The analysis benefits from an original and rich body of surveys and interview data derived from current and former SNEs. The decision-making dynamics of SNEs are shown to contain a compound mix of departmental, epistemic, and supranational dynamics. This study clearly demonstrates that the socializing power of the Commission is conditional and only partly sustained when SNEs exit the Commission. Any long-lasting effect of socialization within European Union's executive machinery of government is largely absent. The compound decision-making dynamics of SNEs are explained by (1) the organizational affiliations of SNEs, (2) the formal organization of the Commission apparatus, and (3) only partly by processes of resocialization of SNEs within the Commission

    Insulin/IGF and Sex Hormone Axes in Human Endometrium and Associations with Endometrial Cancer Risk Factors

    Get PDF
    Given an ordered set of points and an ordered set of geometric objects in the plane, we are interested in finding a non-crossing matching between point-object pairs. In this paper, we address the algorithmic problem of determining whether a non-crossing matching exists between a given point-object pair. We show that when the objects we match the points to are finite point sets, the problem is NP-complete in general, and polynomial when the objects are on a line or when their size is at most 2. When the objects are line segments, we show that the problem is NP-complete in general, and polynomial when the segments form a convex polygon or are all on a line. Finally, for objects that are straight lines, we show that the problem of finding a min-max non-crossing matching is NP-complete. © 2012 Elsevier B.V.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Susceptibility and immunity to helminth parasites

    Get PDF
    Parasitic helminth infection remains a global health problem, whilst the ability of worms to manipulate and dampen the host immune system is attracting interest in the fields of allergy and autoimmunity. Much progress has been made in the last two years in determining the cells and cytokines involved in induction of Type 2 immunity, which is generally protective against helminth infection. Innate cells respond to ‘alarmin’ cytokines (IL-25, IL-33, TSLP) by producing IL-4, IL-5 and IL-13, and this sets the stage for a more potent subsequent adaptive Th2 response. CD4+ Th2 cells then drive a suite of type 2 anti-parasite mechanisms, including class-switched antibodies, activated leukocytes and innate defence molecules; the concerted effects of these multiple pathways disable, degrade and dislodge parasites, leading to their destruction or expulsion
    corecore