19 research outputs found
Admixture Mapping of 15,280 African Americans Identifies Obesity Susceptibility Loci on Chromosomes 5 and X
The prevalence of obesity (body mass index (BMI) ≥30 kg/m2) is higher in African Americans than in European Americans, even after adjustment for socioeconomic factors, suggesting that genetic factors may explain some of the difference. To identify genetic loci influencing BMI, we carried out a pooled analysis of genome-wide admixture mapping scans in 15,280 African Americans from 14 epidemiologic studies. Samples were genotyped at a median of 1,411 ancestry-informative markers. After adjusting for age, sex, and study, BMI was analyzed both as a dichotomized (top 20% versus bottom 20%) and a continuous trait. We found that a higher percentage of European ancestry was significantly correlated with lower BMI (ρ = −0.042, P = 1.6×10−7). In the dichotomized analysis, we detected two loci on chromosome X as associated with increased African ancestry: the first at Xq25 (locus-specific LOD = 5.94; genome-wide score = 3.22; case-control Z = −3.94); and the second at Xq13.1 (locus-specific LOD = 2.22; case-control Z = −4.62). Quantitative analysis identified a third locus at 5q13.3 where higher BMI was highly significantly associated with greater European ancestry (locus-specific LOD = 6.27; genome-wide score = 3.46). Further mapping studies with dense sets of markers will be necessary to identify the alleles in these regions of chromosomes X and 5 that may be associated with variation in BMI
A meta-analysis of genome-wide data from five European isolates reveals an association of COL22A1, SYT1, and GABRR2 with serum creatinine level
<p>Abstract</p> <p>Background</p> <p>Serum creatinine (S<sub>CR</sub>) is the most important biomarker for a quick and non-invasive assessment of kidney function in population-based surveys. A substantial proportion of the inter-individual variability in S<sub>CR </sub>level is explicable by genetic factors.</p> <p>Methods</p> <p>We performed a meta-analysis of genome-wide association studies of S<sub>CR </sub>undertaken in five population isolates ('discovery cohorts'), all of which are part of the European Special Population Network (EUROSPAN) project. Genes showing the strongest evidence for an association with S<sub>CR </sub>(candidate loci) were replicated in two additional population-based samples ('replication cohorts').</p> <p>Results</p> <p>After the discovery meta-analysis, 29 loci were selected for replication. Association between S<sub>CR </sub>level and polymorphisms in the collagen type XXII alpha 1 (<it>COL22A1</it>) gene, on chromosome 8, and in the synaptotagmin-1 (<it>SYT1</it>) gene, on chromosome 12, were successfully replicated in the replication cohorts (p value = 1.0 × 10<sup>-6 </sup>and 1.7 × 10<sup>-4</sup>, respectively). Evidence of association was also found for polymorphisms in a locus including the gamma-aminobutyric acid receptor rho-2 (<it>GABRR2</it>) gene and the ubiquitin-conjugating enzyme E2-J1 (<it>UBE2J1</it>) gene (replication p value = 3.6 × 10<sup>-3</sup>). Previously reported findings, associating glomerular filtration rate with SNPs in the uromodulin (<it>UMOD</it>) gene and in the schroom family member 3 (<it>SCHROOM3</it>) gene were also replicated.</p> <p>Conclusions</p> <p>While confirming earlier results, our study provides new insights in the understanding of the genetic basis of serum creatinine regulatory processes. In particular, the association with the genes <it>SYT1 </it>and <it>GABRR2 </it>corroborate previous findings that highlighted a possible role of the neurotransmitters GABA<sub>A </sub>receptors in the regulation of the glomerular basement membrane and a possible interaction between GABA<sub>A</sub>receptors and synaptotagmin-I at the podocyte level.</p
Формирование эмоциональной культуры как компонента инновационной культуры студентов
Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been
Clinical Features and Genetic Risk of Demyelination Following Anti-TNF Treatment.
BACKGROUND: Anti-TNF exposure has been linked to demyelination events. We sought to describe the clinical features of demyelination events following anti-TNF treatment and to test whether affected patients were genetically predisposed to multiple sclerosis [MS]. METHODS: We conducted a case-control study to describe the clinical features of demyelination events following anti-TNF exposure. We compared genetic risk scores [GRS], calculated using carriage of 43 susceptibility loci for MS, in 48 cases with 1219 patients exposed to anti-TNF who did not develop demyelination. RESULTS: Overall, 39 [74%] cases were female. The median age [range] of patients at time of demyelination was 41.5 years [20.7-63.2]. The median duration of anti-TNF treatment was 21.3 months [0.5-99.4] and 19 [36%] patients were receiving concomitant immunomodulators. Most patients had central demyelination affecting the brain, spinal cord, or both. Complete recovery was reported in 12 [23%] patients after a median time of 6.8 months [0.1-28.7]. After 33.0 months of follow-up, partial recovery was observed in 29 [55%] patients, relapsing and remitting episodes in nine [17%], progressive symptoms in three [6%]: two [4%] patients were diagnosed with MS. There was no significant difference between MS GRS scores in cases (mean -3.5 × 10-4, standard deviation [SD] 0.0039) and controls [mean -1.1 × 10-3, SD 0.0042] [p = 0.23]. CONCLUSIONS: Patients who experienced demyelination events following anti-TNF exposure were more likely female, less frequently treated with an immunomodulator, and had a similar genetic risk to anti-TNF exposed controls who did not experience demyelination events. Large prospective studies with pre-treatment neuroimaging are required to identify genetic susceptibility loci
Transduction and rearrangement of the myc gene by feline leukaemia virus in naturally occurring T-cell leukaemias
Evidence of myc gene transduction by feline leukaemia virus in several spontaneous lymphoid tumours of cats suggests that recombinant viruses carrying oncogenes may be much more involved in oncogenesis in natural conditions than previously recognized