168 research outputs found

    Current-voltage correlations in interferometers

    Full text link
    We investigate correlations of current at contacts and voltage fluctuations at voltage probes coupled to interferometers. The results are compared with correlations of current and occupation number fluctuations at dephasing probes. We use a quantum Langevin approach for the average quantities and their fluctuations. For higher order correlations we develop a stochastic path integral approach and find the generating functions of voltage or occupation number fluctuations. We also derive a generating function for the joint distribution of voltage or occupation number at the probe and current fluctuations at a terminal of a conductor. For energy independent scattering we found earlier that the generating function of current cumulants in interferometers with a one-channel dephasing or voltage probe are identical. Nevertheless, the distribution function for voltage and the distribution function for occupation number fluctuations differ, the latter being broader than that of former in all examples considered here.Comment: 23 pages, 10 figures, minor changes, additional appendix, added reference

    Probing the surface states in Bi2Se3 using the Shubnikov-de Haas effect

    Get PDF
    Shubnikov-de Haas (SdH) oscillations are observed in Bi2Se3 flakes with high carrier concentration and low bulk mobility. These oscillations probe the protected surface states and enable us to extract their carrier concentration, effective mass and Dingle temperature. The Fermi momentum obtained is in agreement with angle resolved photoemission spectroscopy (ARPES) measurements performed on crystals from the same batch. We study the behavior of the Berry phase as a function of magnetic field. The standard theoretical considerations fail to explain the observed behavior.Comment: 6 pages, 8 figures. Accepted to Physical Review

    Genetic parameters and path analysis of traits of upland cotton for the brazilian Semi-Arid region.

    Get PDF
    Upland cotton fiber is one of the most used natural fibers in the production of textile materials worldwide. For this reason, the selection of genotypes that meet the industry?s requirements is one of the main goals of cotton breeding programs. This study aimed to estimate the phenotypic and genotypic correlations among fiber traits and identify the direct and indirect effects of these traits on seed cotton yield of upland cotton genotypes in the semi-arid Brazilian Northeast. This study assessed 21 upland cotton genotypes from a complete diallel cross without reciprocals. The design was randomized blocks, with three replications and 21 treatments. The experiment was conducted in the municipality of Patos - PB, in 2015. The statistical analysis consisted of analysis of variance by the F test, phenotypic and genotypic correlation analysis, and path analysis. The studied materials revealed genetic variability for all traits. Path analysis has shown that the traits fiber elongation, fiber strength, and fiber fineness have a direct positive effect on seed cotton yield.Título em português: Parâmetros genéticos e análise de trilha de caracteres de algodoeiro herbáceo para região do Semi-árido brasileiro

    Probing quantum and thermal noise in an interacting many-body system

    Full text link
    The probabilistic character of the measurement process is one of the most puzzling and fascinating aspects of quantum mechanics. In many-body systems quantum mechanical noise reveals non-local correlations of the underlying many-body states. Here, we provide a complete experimental analysis of the shot-to-shot variations of interference fringe contrast for pairs of independently created one-dimensional Bose condensates. Analyzing different system sizes we observe the crossover from thermal to quantum noise, reflected in a characteristic change in the distribution functions from Poissonian to Gumbel-type, in excellent agreement with theoretical predictions based on the Luttinger liquid formalism. We present the first experimental observation of quasi long-range order in one-dimensional atomic condensates, which is a hallmark of quantum fluctuations in one-dimensional systems. Furthermore, our experiments constitute the first analysis of the full distribution of quantum noise in an interacting many-body system

    The Borexino detector at the Laboratori Nazionali del Gran Sasso

    Full text link
    Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography).Comment: 37 pages, 43 figures, to be submitted to NI

    New results on solar neutrino fluxes from 192 days of Borexino data

    Full text link
    We report the direct measurement of the ^7Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV ^7Be neutrinos is 49+-3(stat)+-4(syst) counts/(day * 100ton). The hypothesis of no oscillation for ^7Be solar neutrinos is inconsistent with our measurement at the 4sigma level. Our result is the first direct measurement of the survival probability for solar nu_e in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of ^7Be, pp, and CNO solar nu_e, and the limit on the magnetic moment of neutrinos

    Diallel analysis for technological traits in upland cotton.

    Get PDF
    Final cotton quality is of great importance, and it depends on intrinsic and extrinsic fiber characteristics. The objective of this study was to estimate general (GCA) and specific (SCA) combining abilities for technological fiber traits among six upland cotton genotypes and their fifteen hybrid combinations, as well as to determine the effective genetic effects in controlling the traits evaluated. In 2015, six cotton genotypes: FM 993, CNPA 04-2080, PSC 355, TAM B 139-17, IAC 26, and TAMCOT-CAMD-E and fifteen hybrid combinations were evaluated at the Experimental Station of Embrapa Algodão, located in Patos, PB, Brazil. The experimental design was a randomized block with three replications. Technological fiber traits evaluated were: length (mm); strength (gf/tex); fineness (Micronaire index); uniformity (%); short fiber index (%), and spinning index. The diallel analysis was carried out according to the methodology proposed by Griffing, using method II and model I. Significant differences were detected between the treatments and combining abilities (GCA and SCA), indicating the variability of the study material. There was a predominance of additive effects for the genetic control of all traits. TAM B 139-17 presented the best GCA estimates for all traits. The best combinations were: FM 993 x TAM B 139-17, CNPA 04-2080 x PSC 355, FM 993 x TAMCOTCAMD- E, PSC 355 x TAM B 139-17, and TAM B 139-17 x TAMCOTCAMD- E, by obtaining the best estimates of SCA, with one of the parents having favorable estimates for GCA

    Static and Dynamic Lung Volumes in Swimmers and Their Ventilatory Response to Maximal Exercise

    Get PDF
    Purpose While the static and dynamic lung volumes of active swimmers is often greater than the predicted volume of similarly active non-swimmers, little is known if their ventilatory response to exercise is also different. Methods Three groups of anthropometrically matched male adults were recruited, daily active swimmers (n = 15), daily active in fields sport (Rugby and Football) (n = 15), and recreationally active (n = 15). Forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), and maximal voluntary ventilation (MVV) was measured before and after exercise to volitional exhaustion. Results Swimmers had significantly larger FVC (6.2 ± 0.6 l, 109 ± 9% pred) than the other groups (5.6 ± 0.5 l, 106 ± 13% pred, 5.5 ± 0.8, 99% pred, the sportsmen and recreational groups, respectively). FEV1 and MVV were not different. While at peak exercise, all groups reached their ventilatory reserve (around 20%), the swimmers had a greater minute ventilation rate than the recreational group (146 ± 19 vs 120 ± 87 l/min), delivering this volume by breathing deeper and slower. Conclusions The swimmers utilised their larger static volumes (FVC) differently during exercise by meeting their ventilation volume through long and deep breaths
    corecore