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Abstract 

Purpose: While the static and dynamic lung volumes of active swimmers is often greater than the 

predicted volume of similarly active non-swimmers, little is known if their ventilatory response to 

exercise is also different.   

Methods: Three groups of anthropometrically matched male adults were recruited, daily active 

swimmers (n = 15), daily active in fields sport (Rugby and Football) (n = 15), and recreationally 

active (n = 15). Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and 

maximal voluntary ventilation (MVV) was measured before and after exercise to volitional 

exhaustion.  

Results: Swimmers had significantly larger FVC (6.2 ± 0.6 L, 109 ± 9 % pred) than the other groups 

(5.6 ± 0.5 L, 106 ± 13 % pred, 5.5 ± 0.8, 99 % pred, the sportsmen and recreational groups 

respectively). FEV1 and MVV were not different.  While at peak exercise, all groups reached their 

ventilatory reserve (around 20%), the swimmers had a greater minute ventilation rate than the 

recreational group (146 ± 19 vs 120 ± 87L/min), delivering this volume by breathing deeper and 

slower.  

Conclusions: The swimmers utilised their larger static volumes (FVC) differently during exercise by 

meeting their ventilation volume through long and deep breaths.  

Keywords: Tidal volume, swimmers,  V̇O2 max, ventilatory reserve, MVV 
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Introduction 

The ventilatory response to exertion is well known, with ventilation (𝑉�̇�) increasing 

progressively with intensity, where the response is achieved through increases in both tidal 

volume (VT) and breathing rate. [1-3] During progressive aerobic exercise, the initial increase 

in 𝑉�̇�   is achieved first through an increase predominantly in VT, and later via a marked increase 

in breathing rate as VT approaches a plateau at approximately 50-60% of the lungs vital 

capacity. [1, 4-6]  

The respiratory system has not been fully considered as a limiting factor in maximal exercise 

performance because of the existence of a significant breathing reserve as ventilation never 

reaches the maximum available (MVV). [7-9] In healthy recreationally active adults 56-69% 

of 𝑉𝐸 ,̇  is used. [3]. Little research has focused on swimmers, who synchronise their breathing 

with their strokes. 

Competitive swimmers have static and dynamic lung volumes that are significantly greater than 

age and stature matched non-swimmers. [10-12] However it is unclear as to whether these 

differences in lung function are due to a genetic predisposition, or an effect of training. [11,13]  

The study investigates whether the ventilatory response to exercise in swimmers is different to 

other athletes.  The aim is to compare maximal exercise using cycle ergometry in swimmers 

and two groups of matched non-swimmers.  A further aim is to compare the static and dynamic 

lung volumes between the three groups  
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Materials and Methods 

Subjects. Three groups of healthy adult males (n=45) were recruited, group one were daily 

active swimmers (n =15), group two daily active field sports men (Rugby and Football) (n = 

15) and a recreationally active group who exercised irregularly (n = 15) (Table 1). The study 

was ethically approved by the School Ethics committee, and all participants provided written 

consent. All participants were asked to avoid strenuous and prolonged physical activity in the 

24 hours preceding their test session since forced vital capacities (FVC) have been shown to be 

temporarily reduced following acute exercise, whilst residual volumes are temporarily 

increased. [14,15]. 

Test Procedures: A fixed cycle ergometer (Lode Corival, Groningen, The Netherlands) was 

used to exercise the participants.  Oxygen consumption (V̇O2) and carbon dioxide production 

(V̇CO2), pulmonary ventilation, breathing parameters and lung function were assessed using a 

calibrated metabolic gas analyser (Oxycon pro, Jaeger, Germany). Heart rate was recorded 

using an ECG secured to the chest (Polar, Polar Electro, Finland) 

Whilst wearing a nose clip and seated, the FVC, forced expiratory volume in 1 second (FEV1), 

and peak expiratory flow (PEF) were recorded. Following this, three 12s long maximum 

voluntary ventilation manoeuvres were performed. For this manoeuvre, participants were 

vigorously encouraged to breathe as deeply and as rapidly as possible for the full 12s, the 

highest value recorded being used for analysis.  

After five-minutes of sitting quietly on the ergometer, resting breathing parameters were 

recorded for three minutes. The participants then performed an incremental cycle test to 

volitional exhaustion at a self-selected cadence. The initial workload for the first minute for all 

participants was 50 W, thereafter increasing incrementally at a rate determined by a prediction 

equation using the height, age, and weight of each individual participant. [16] The exercise test 

was halted when the participant reached volitional fatigue, or could no longer maintain their 

self-selected cadence. Respiratory parameters were recorded continuously during while heart 

rate was recorded at each minute following the initiation of the incremental exercise. After 

exercising the participants rested for thirty minutes before the lung volume measurements were 

repeated. The exercise intensity was determined to be maximal only when the respiratory 

exchange ratio was greater than 1.15, and at least 90% of an age predicted heart rate maximum 

was achieved. [17]   
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Data Analysis. All data are presented as the mean ± SD unless stated otherwise. For the 

spirometric data, the largest values for FVC and FEV1 before and after exercise were used. The 

MVV values used for analysis for each participant were selected in similar fashion. Differences 

between pre-and post-exercise values for each exercise groups spirometric data were assessed 

using a paired samples t-test. Differences between the three groups for all variables were 

determined using a one-way MANOVA. A value of p <0.05 being considered significant. All 

statistical analyses were performed using statistical software (SPSS version 20, IBM, Chicago, 

USA). 
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Results 

Spirometry revealed that the swimmers had the greatest static volumes, with FVC both before 

and after the maximal exercise test, being larger than both non-swimming groups (recreational, 

p < 0.01, field sports, p = 0.02) (Table 2). With the dynamic volumes, overall no differences 

were found for FEV1 or MVV between any of the groups. However, within the filed sports 

group the FVC, FEV1, and MVV did increase slightly (p < 0.05) (Table 2).   

The field sports group and swimming groups exercise peaked at similar (p > 0.050) workloads 

(300 ± 68 and 305 ± 43 W respectively) and V̇O2 (52 ± 10 and 53 ± 7 ml/min/kg respectively) 

(Table 3). As expected, the recreational group produced significantly lower peak values (Table 

3). The peak �̇�𝐸  achieved by the swimming and field sports groups (146 ± 19 vs 141 ± 28 

L/min, respectively) was significantly greater than the recreational group (p < 0.05) at 120 ± 

87 L/min (Table 3). An important observation is the swimming group achieved this at a lower 

breathing rate at 48 ± 5 breathes/min (Table 3).  This is reflected in similar changes in VT with 

the swimmers possessing the greatest maximum volumes at 3.1 ± 0.4 L (Table 3).   

The peak  �̇�𝐸   and VT volumes achieved during maximal exercise were compared to the initial 

static and dynamic lung volumes (Table 3). At peak exercise, all three groups used the same 

portion of their MVV (87 ± 21, 83 ± 18, 76 ± 24 %, swimmers, field sports and recreational 

groups respectively), leaving a ventilatory reserve of around 18%. Similarly, all three groups 

used the same portion of their FVC (50 ± 8, 47 ± 10, 43 ± 12 % swimmers, field sports and 

recreational groups respectively) (Table 3). 
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Discussion 

This study compares groups of swimmers and non-swimmers, matched anthropometrically and 

in terms of exercise performance. However, the swimmers differ by adopting an alternative 

breathing strategy to gain their  �̇�𝐸 𝑝𝑒𝑎𝑘 .  At their peak exercise level opting to breathe slower 

and more deeply than the non-swimmers.  

Higher volumes for FVC (around 10 % above their predicted value) were found for swimmers 

in comparison to both the field sportsmen and the recreational groups (Table 2) reflecting the 

findings of others. [10-11,13, 18-19] 

 This study found no difference in FEV1, or MVV, which contrasts with some other studies, 

which have shown higher values in swimmers and lower values in sedentary or recreationally 

active people. [10-11, 20-21]   A study by Lazovic et al., [13] assessed whether specific sport 

training had any bearing on respiratory function. Comparing fifteen different sports and a 

physically inactive group, they found that athletes who competed in sports where height 

positively correlated with success, such as water polo and rowing, had greater lung volumes 

than a sedentary group. However, amongst sports such as rugby, handball, and tennis, there 

were no differences for values of FEV1, MVV, or even FVC in relation to participation level.  

However, given that this study did not appropriately control for height between groups, and 

that it is well understood total lung volume is most positively correlated with height, greater 

volumes are expected in the taller athletes such as those competing in water polo and rowing.  

[22] Regardless, the authors found that some sport groups with no difference in height had 

equal static and dynamic lung volumes (handball, football) and even some lower lung volumes 

(boxing) compared to sedentary controls. Therefore, the authors suggested that besides height, 

other factors could have impact upon lung function such as fat free mass, thoracic diameter, 

and trunk length. [13,23]  

The present study shows that at maximal exercise, the swimmers and field sports group reached 

similar V̇O2 peak, �̇�𝐸 𝑝𝑒𝑎𝑘 , and workloads, all of which were significantly greater than the 

recreational group (Table 3). Despite these differences it was found that their ventilatory 

reserve (�̇�𝐸 𝑝𝑒𝑎𝑘  expressed as a percent of MVV) were the same at around 20%. [3, 24-25] 

 In reaching the observed peak ventilation values, each group were shown to use the same 

proportion of their measured FVC (~50%). The percentage of the FVC and MVV that each 

group used is comparable to those observed in previous studies. [3, 24-26] Beginning with the 
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same resting breathing rates, the intermittent group had equal tidal volumes and breathing rate 

at maximal exercise as the recreational group, reflected in a similar  �̇�𝐸 𝑝𝑒𝑎𝑘  with the 

recreational group consuming around 14 ml/kg/min less oxygen at VO2 peak. This would indicate 

that ventilation reaches a maximum first (obtainable by all healthy adults) and that oxygen 

transport and use dictates exercise capacity as a second barrier. Although the swimmers 

possessed a greater FVC their ventilatory reserve dictated their �̇�𝐸 𝑝𝑒𝑎𝑘 . However, although 

possessing a similar resting breathing rate as the non-swimmers, the swimmers displayed a 

greater VT Peak at 3.1 ± 0.4 L as opposed to 2.3 - 2.6 L for the non-swimmers (the field sports 

and recreation groups). The 80% ventilatory reserve dictated that the swimmers respiratory 

cycle increased and was 12% slower than the non-swimmers (Table 3). If the swimmers had a 

matching respiratory rate of around 55 breaths/min their �̇�𝐸 𝑝𝑒𝑎𝑘  would equal 171 L/min, using 

a further 10% of their ventilatory reserve. Where the swimmers tachypnoeic switch occurs 

needs further investigation especially as it may aid in improving swimming performance.  

Whether the different lung volumes and capacities reported in swimmers is due to their training, 

the result of a genetic predisposition, or a mixture of both, has been investigated in other 

studies. [11,13, 20, 27] In support of the importance of genotype, it has been reported that 

swimmers tend to be taller than age and weight matched peers, and that these anthropometric 

characteristics are influenced by genetic inheritance. [11]. Rather than the influence of height 

alone, further support in favour of a genetic contribution exists through other studies reporting 

greater lung volumes in talented young swimmers with limited training. [28,29] Further to this, 

Baxter-Jones and Helms conducted a study on 231 highly trained swimmers, gymnasts, 

footballers, and tennis players, whilst controlling for age, height, weight, and training status. 

[21] They observed that across five different age grades, swimmers had the greatest lung 

volumes and that the differences in lung volumes between sports did not change over time.  

In support of phenotypical influence, other studies have suggested that swim training directly 

effects the muscle function of the respiratory system, resulting in increases in both static and 

dynamic lung volumes. [27, 30-32] Precisely what aspect of swim-training it is that could result 

in these observed increases is somewhat unclear, however, several suggestions considering the 

uniqueness of swimming as an exercise have been proposed, such as an altered ventilation 

distribution due to the altered influence of gravity when swimming in the horizontal position. 

[33]. Swimming in water, which is denser than air, increases the inspiratory muscle work, 

which may result in improved pulmonary function. [34,35] However, the absolute contributions 
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of both swim training, and genetic endowment to the greater lung volumes observed in 

successful swimmers will remain unclear until further longitudinal studies examining selection, 

respiratory muscle strength, and training induced adaptations in greater detail are conducted. 

[11]. 

Lung volume and capacity have been reported to change after activities that require large power 

outputs, and sometimes lead to problems such as coughing and wheezing. [36-38] It has been 

observed that immediately after high intensity exercise, FVC decreases whilst residual volumes 

are elevated. [15,37] The data from the present study indicate that amongst swimmers and 

recreationally active controls, a maximal exercise test does alter static or dynamic lung 

function. However, the data show that the intermittent land-based athletes improve after 30 

minutes of rest. Albeit, the differences are small, but represent some post-exercise relaxation 

in airway tone.   

In conclusion, the swimmers had a larger FVC than their anthropometrically matched non-

swimming groups. This larger lung volume proved significant at maximal exercise, as the 

swimmers could take deeper and lengthier breaths compared to the others. Although the reason 

for this difference is yet to be elucidated, swimmers often entrain their breathing with their 

stroke rate, this could perhaps require a more flexible way to reach �̇�𝐸 𝑝𝑒𝑎𝑘 . Further to this 

observation, it appears that following a maximal exercise test, respiratory function is improved 

in the field sports men.  
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Tables 

Table 1 Population characteristics at rest. 

                                          Activity Group 

Parameter Recreational Field Sports Swimmers 

Age (yrs) 23 ± 2 c 23 ± 3 c 21 ± 1 ab 

Height (cm) 178 ± 8 175 ± 6 181 ± 7 

Weight (kg) 81 ± 8 77 ± 11 75 ± 6 

Systolic blood 

pressure (mmHg) 

122 ± 4 c 119 ± 4 118 ± 3 b 

Diastolic blood 

pressure (mmHg) 

79 ± 5 c 78 ± 3 c 74 ± 3 ab 

Training time 

(days/wk) 

2 ± 2 bc 5 ± 1 a 5 ± 0 b 

Resting 𝑉�̇�   (L/min) 12.2 ± 1.5 14.0 ± 3.8 12.6 ± 2.3 

Resting �̇�O2 

(ml/kg/min) 

6.0 ± 1.5 6.6 ± 1.4 6.3 ± 1.0 

Rested breathing rate, 

(L/min) 

16 ± 2 17 ± 4 16 ± 3 

Data are mean ± SD for all variables. abc indicates significant difference between reca. field b. and swimc groups respectively. 
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Table 2 Respiratory data before and after maximal exercise test 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are presented as mean ± SD. abc represents statistically significant differences for variables between reca. field. and swimc groups respectively. * represents statistically 

significant difference between pre, and post exercise test values within groups. FVC = Forced Vital Capacity, FEV1 = Forced Expiratory volume in 1s, MVV = Maximum 

Voluntary Ventilation. #Predicted lung volumes were calculated with the use of the Quanjer GLI-2012 regression equations. [39]  

  Activity Group 

 

Recreational 

 

Field Sports 

 

Swimmers 

Parameter Before After P  

 

Before After P  

 

Before After P 

 

FVC (L) 

 

5.49 ± 0.78 c 

 

5.57 ± 0.75 c 

 

0.11 

 

 

5.57 ± 0.53 c 

 

5.69 ± 0.53 c 

 

0.02* 

 

 

6.22 ± 0.60 ab 

 

6.27 ± 0.57 ab 

 

0.47 

FVC % pred# 99 ± 13 100 ± 12 

  

106 ± 13 108 ± 10 

  

109 ± 9 110 ± 9 

 
FEV1 (L) 4.59 ± 0.62 4.57 ± 0.54 0.79 

 

4.68 ± 0.50 4.81 ± 0.51 0.01* 

 

4.95 ± 0.42 4.95 ± 0.50 0.99 

FEV1 % pred# 98 ± 12 98 ± 12 

  

105 ± 13 108 ± 13 

  

104 ± 11 104 ± 13 

 
FVC / FEV1 (%) 84 ± 4 83 ± 7  0.46 

 

84 ± 5  85 ± 7 0.23 

 

81 ± 7 79 ± 7 0.33 

FVC / FEV1 % pred 100 ± 5 99 ± 8 

  

99 ± 6 100 ± 8 

  

97 ± 9 94 ± 9 

 
MVV (L/min) 164 ± 26 162 ± 31 0.54 

 

173 ± 33 180 ± 31 0.04* 

 

170 ± 24 169 ± 26 0.78 

MVV % pred 102 ± 16 101± 15     97 ± 18 93 ± 11     103 ± 13 104 ± 12   
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Table 3 Peak exercise data for each test group 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data are presented as mean ± SD for each variable. abc represents statistically significant differences for variables between reca. fieldb. and swimc groups 

respectively. 

  Activity Group 

Parameter Recreationala Field Sportsb Swimmersc 

Work load max (W) 217 ± 25bc 300 ± 68a 305 ± 43a 

HR max (bpm) 183 ± 8 184 ± 8 183 ± 9 

�̇�O2 peak (ml/kg/min) 36.1 ± 7.2bc 51.5 ± 10.4 a 52.7 ± 7.5 a 

�̇�𝐸 𝑝𝑒𝑎𝑘  (L/min) 120 ± 87 c 141 ± 28 146 ± 19 a 

Peak breathing rate 

(L/min) 

54 ± 12c 55 ± 11c  48 ± 5ab  

VT peak (L) 2.3 ± 0.6 c 2.6 ± 0.6 c 3.1 ± 0.4 ab 

�̇�𝐸 𝑝𝑒𝑎𝑘  % of MVV 76 ± 24 83 ± 18 87 ± 21 

breath / W 4 ± 1 bc 6 ± 1 a 6 ± 1 a 

VT peak % of FVC 43 ± 12 47 ± 10 50 ± 8 


