80 research outputs found

    Development and Adhesion Strength of Plasma-Sprayed Thermal Barrier Coating on the Cast Iron Substrate

    Get PDF
    In the present scenario, the atmospheric plasma spray is used as a very important and effective weapon to produce the thermal barrier coating (TBC) on the substrate which will impart required surface characteristics to the components which are demanded by the industry. The TBC is used to impart the required characteristic such as wear, corrosion and thermal resistance to the hot section component where these will undergo severe service condition at elevated temperature. Research is carried out to replace the conventional liners in the I.C Engine by the thermal barrier coated ceramic liner. To achieve this, in this work Cast Iron substrate is used and it has been coated with a thermal barrier coating with the help of Atmospheric plasma spraying. These consisting of equal-proportion YSZ and pure alumina as topcoat ceramic material and in-between these topcoat and substrate there will be two bond coat first bond coat is Nickel Iron Aluminium Composite Powder (Metco 452) between the substrate and second bond coat. Second is  Alumina Nickel Aluminide powder blend (Metco 410 NS) between the topcoat and first bond coat. Coatings were subjected to microstructure analysis, porosity and adhesion strength. In this work, top coating thickness ie. 300”m exhibits more percentage of porosity ie.4.2% than other two coating thickness 200 and 100 ”m  3.9% and 3.5% respectively. The bond coat will possess porosity percentage of  4.0 %, 3.5 % and 3 % for C3, C2 and C1 respectively. The adhesion strength test of the coatings was conducted and determined by the help of varying the topcoat thickness from 100”m to 300 ”m with a step of 100 ”m. In this work, it was established that the topcoat with the 100 ”m exhibits the very good bond strength 70.81 MPa when compared with other two coating thickness 200”m and 300 ”m have the adhesion strength 69.1 MPa and 65.52 MPa respectively. ASTM C 633 standard is used to prepare and conduct the test

    Near real-time determination of earthquake source parameters for tsunami early warning from geodetic observations

    Get PDF
    Exemplifying the tsunami source immediately after an earthquake is the most critical component of tsunami early warning, as not every earthquake generates a tsunami. After a major under sea earthquake, it is very important to determine whether or not it has actually triggered the deadly wave. The near real-time observations from near field networks such as strong motion and Global Positioning System (GPS) allows rapid determination of fault geometry. Here we present a complete processing chain of Indian Tsunami Early Warning System (ITEWS), starting from acquisition of geodetic raw data, processing, inversion and simulating the situation as it would be at warning center during any major earthquake. We determine the earthquake moment magnitude and generate the centroid moment tensor solution using a novel approach which are the key elements for tsunami early warning. Though the well established seismic monitoring network, numerical modeling and dissemination system are currently capable to provide tsunami warnings to most of the countries in and around the Indian Ocean, the study highlights the critical role of geodetic observations in determination of tsunami source for high-quality forecasting

    Air Quality, National Standards and Human Health in India (NIAS Policy Brief No. NIAS/NSE/EEC/U/PB/25/2021)

    Get PDF
    A clean air environment is prudent to healthy living. Studies related to the impact of ambient air pollution on public health are limited in India. Studies conducted by researchers at NIAS indicate that the natural baseline levels for Particulate Matter pollution in 10 megacities (with different climatological conditions) are significantly higher than the WHO’s Air Quality Guidelines levels. The exposure-response function cannot be universal due to the adaptive power of human beings. Therefore, coordinated national effort between MoES, MOEFCC, and ICMR is required to conduct scientific studies to determine the "exposure-response function" for Indians

    Performance of the tsunami forecast system for the Indian Ocean

    Get PDF
    The Indian Tsunami Early Warning System (ITEWS) at the Indian National Centre for Ocean Information Services, Hyderabad, is responsible for issuing tsunami bulletins in India. The tsunami centre oper- ates on a 24×7 basis and monitors seismological sta- tions, bottom pressure recorders and tidal stations throughout the Indian Ocean to evaluate potentially tsunamigenic earthquakes and disseminating tsunami bulletins. The end-to-end capabilities of this warning system have been well proven during all the tsunami- genic earthquakes that occurred since September 2007. Comparison of the earthquake parameters estimated by ITEWS with other international seismological agencies suggests that the system is performing well and has achieved the target set up by the Inter- governmental Oceanographic Commission

    Assessment of the coral bleaching during 2005 to decipher the thermal stress in the coral environs of the Andaman Islands using Remote Sensing

    Get PDF
    Sea Surface Temperature (SST) derived from the NOAA AVHRR satellite data were used to generate the Degree of Heating Weeks (DHW) and Hot Spot (HS) products. Combination of the cumulative temperature anomalies and the thermal stress studies were yielded to synoptically identify the probable areas of bleaching. The bleaching status of the Andaman region was assessed based on the DHW and HS for the bleaching event occurred in the Andaman region in April/May 2005. The bleaching status up to Alert Level-1 was recorded with the maximum HS of 3oC and DHW 6oC-week. Simultaneous in-situ reef observations conducted in the Andaman Sea confirmed the coral bleaching event. The maximum mortality in the region due to coral bleaching was shown by the Acropora species (43%) followed by Montipora species (22%) and Porites species (14%). This study focused on detection of coral bleaching warning based on the SST in compliment with the in-situ observations

    Wave forecasting and monitoring during very severe cyclone Phailin in the Bay of Bengal

    Get PDF
    Wave fields, both measured and forecast during the very severe cyclone Phailin, are discussed in this communication. Waves having maximum height of 13.54 m were recorded at Gopalpur, the landfall point of the cyclone. The forecast and observed significant wave heights matched well at Gopalpur with correlation coefficient of 0.98, RMS error of 0.35 m and scatter index of 14%. Forecasts were also validated in the open ocean and found to be reliable (scatter index < 15%). The study also revealed the presence of Southern Ocean swells with a peak period of 20-22 sec hitting Gopalpur coast along with the cyclone-generated waves

    Estimating global injuries morbidity and mortality : methods and data used in the Global Burden of Disease 2017 study

    Get PDF
    Background: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. Methods: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. Results: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. Conclusions: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future

    Spatial, temporal, and demographic patterns in prevalence of smoking tobacco use and attributable disease burden in 204 countries and territories, 1990-2019 : a systematic analysis from the Global Burden of Disease Study 2019

    Get PDF
    Background Ending the global tobacco epidemic is a defining challenge in global health. Timely and comprehensive estimates of the prevalence of smoking tobacco use and attributable disease burden are needed to guide tobacco control efforts nationally and globally. Methods We estimated the prevalence of smoking tobacco use and attributable disease burden for 204 countries and territories, by age and sex, from 1990 to 2019 as part of the Global Burden of Diseases, Injuries, and Risk Factors Study. We modelled multiple smoking-related indicators from 3625 nationally representative surveys. We completed systematic reviews and did Bayesian meta-regressions for 36 causally linked health outcomes to estimate non-linear dose-response risk curves for current and former smokers. We used a direct estimation approach to estimate attributable burden, providing more comprehensive estimates of the health effects of smoking than previously available. Findings Globally in 2019, 1.14 billion (95% uncertainty interval 1.13-1.16) individuals were current smokers, who consumed 7.41 trillion (7.11-7.74) cigarette-equivalents of tobacco in 2019. Although prevalence of smoking had decreased significantly since 1990 among both males (27.5% [26. 5-28.5] reduction) and females (37.7% [35.4-39.9] reduction) aged 15 years and older, population growth has led to a significant increase in the total number of smokers from 0.99 billion (0.98-1.00) in 1990. Globally in 2019, smoking tobacco use accounted for 7.69 million (7.16-8.20) deaths and 200 million (185-214) disability-adjusted life-years, and was the leading risk factor for death among males (20.2% [19.3-21.1] of male deaths). 6.68 million [86.9%] of 7.69 million deaths attributable to smoking tobacco use were among current smokers. Interpretation In the absence of intervention, the annual toll of 7.69 million deaths and 200 million disability-adjusted life-years attributable to smoking will increase over the coming decades. Substantial progress in reducing the prevalence of smoking tobacco use has been observed in countries from all regions and at all stages of development, but a large implementation gap remains for tobacco control. Countries have a dear and urgent opportunity to pass strong, evidence-based policies to accelerate reductions in the prevalence of smoking and reap massive health benefits for their citizens. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019
    • 

    corecore