48 research outputs found

    Effect of enrichment material on the shelf life and field efficiency of bioformulation of Rhizobium sp. and P-solubilizing Pseudomonas fluorescens

    Get PDF
    ABSTRACT In the present investigation seven carriers -talc, saw dust, fuller's earth, rice husk, sugarcane bagasse, charcoal and wheat bran were evaluated for the production of bioformulation. The bacteria used for bioformulation development were root nodulating Rhizobium sp. RASH6 Chl+Kan+ and phosphate solubilizing Pseudomonas fluorescens PB6 Amp+Str+ . Both bacterial strains were inoculated in all the carriers separately and in combination with each other (coinoculants). The bacterial population was determined in each carrier up to six month storage. Sawdust proved to be the best carrier in both water holding capacity (350 %) and also in maintaining the bacterial population for both individual and co-inoculation. Saw dust based formulation was separately amended with CMC, sucrose, molasses and gum. Enrichment of saw dust with molasses brought maximum increment in population both in mono and coinoculants. Finally the impact of six month-stored enrichment inoculants on plant productivity was determined taking chickpea as a test crop. The co-inoculants proved much better in enhancing the seedling biomass and the nodule number. Molasses enriched saw dust based formulation showed 48.43 %, 52.02 % and 57.41 % enhancement in dry weight with RASH6, PB6 and their co-inoculant respectively after 60 days of sowing. Results showed that enrichment of carrier is expected to permit the retention of cell viability thus increasing the effectiveness of the active material

    The global methane budget 2000–2017

    Get PDF
    Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    Alleviation of Heavy Metal Stress in Plants and Remediation of Soil by Rhizosphere Microorganisms

    No full text
    Increasing concentration of heavy metals (HM) due to various anthropogenic activities is a serious problem. Plants are very much affected by HM pollution particularly in contaminated soils. Survival of plants becomes tough and its overall health under HM stress is impaired. Remediation of HM in contaminated soil is done by physical and chemical processes which are costly, time-consuming, and non-sustainable. Metal–microbe interaction is an emerging but under-utilized technology that can be exploited to reduce HM stress in plants. Several rhizosphere microorganisms are known to play essential role in the management of HM stresses in plants. They can accumulate, transform, or detoxify HM. In general, the benefit from these microbes can have a vast impact on plant’s health. Plant–microbe associations targeting HM stress may provide another dimension to existing phytoremediation and rhizoremediation uses. In this review, applied aspects and mechanisms of action of heavy metal tolerant-plant growth promoting (HMT-PGP) microbes in ensuring plant survival and growth in contaminated soils are discussed. The use of HMT-PGP microbes and their interaction with plants in remediation of contaminated soil can be the approach for the future. This low input and sustainable biotechnology can be of immense use/importance in reclaiming the HM contaminated soils, thus increasing the quality and yield of such soils

    Guidelines for practice of allergen immunotherapy in India: 2017-An update

    No full text
    The practice of Allergy and Immunotherapy is not streamlined in our country and there were no guidelines till we published in 2009 in IJAAI. The guidelines are updated now incorporating the additional information after 2009. The purpose of bringing out these guidelines was to maintain the uniformity in the methods of diagnosis and management i.e. Immunotherapy in the country. Because of different soil conditions, temperature, different allergens, different seasonal variations etc, it was the felt the need to have separate guidelines for India, although such guidelines are available from other organisations. These guidelines are based on available guidelines with modifications/alterations at appropriate places keeping in mind the situation in our country

    Expansion of peripheral and intratumoral regulatory T-cells in hepatocellular carcinoma: A case-control study

    No full text
    Background: Hepatocellular carcinoma (HCC) is notorious for poor prognosis with limited therapeutic options. A better understanding of the role of regulatory T-cells (Tregs) in HCC is important for design of immunotherapy based clinical protocol. The objective of the present study was to evaluate the presence of Tregs in tumor microenvironment in patients with HCC compared to chronic hepatitis (CH). Materials and Methods: The frequency of CD4 + CD25 + Treg cells was evaluated from peripheral blood (PB) of 28 patients of HCC and 30 controls including CH cases and healthy donors using flowcytometry. Intratumoral Treg were also analyzed in tissue samples from 17 HCC cases and 15 CH cases. In addition the expression of FOXP3 and CTLA-4 was also studied by RT-PCR. Results: Frequency of CD4 + CD25 + cells in the PBMCs of HCC cases was significantly higher than in HC (10.8 ± 7.64 vs 3.05 ± 1.30, P < 0.005) and CH patients (2.88 ± 1.92, P < 0.005). Also Treg population was significantly higher in HCC tumor microenvironment compared to CH biopsies (15.8 ± 5.32 vs 5.51 ± 3.40, P < 0.05). Expression of FOXP3 and CTLA-4 was also significantly higher in HCC patients ( P < 0.05) compared to CH group. Conclusions: We provide evidence of an increased population of Treg not only in the PB but also in tumor microenvironment of HCC patients, suggesting association of enhanced Treg activity with poor immune responses to tumor antigens. These findings may in future play a significant role in designing immunotherapeutic approaches in HCC

    Association of TNF-β polymorphism with disease severity among patients infected with hepatitis C virus

    No full text
    The pathogenesis of chronic hepatitis C virus (HCV) infection remains unclear. Tumour necrosis factor alpha (TNF-&#945;) is alleged to contribute in the pathogenesis of chronic HCV infection. Single nucleotide polymorphism in TNF-&#945; and -&#946; genes could influence the outcome of HCV infection. The aim was to study single nucleotide polymorphism in TNF-&#945; promoter region and Nco I polymorphisms in the TNF-&#946; gene in patients with chronic hepatitis C. Fifty-two patients with histologically proven chronic hepatitis, who had raised ALT levels (&gt;1.5 &#215; ULN) and were HCV RNA positive, were studied. Genotyping of -308 promoter variant of TNF-&#945; was performed by PCR with primers that incorporated an Nco I restriction site. For PCR typing of the TNF-&#946; Nco I restriction fragment length polymorphism, sequence specific primers were used. Polymorphism in the TNF-&#945; G/G, G/A and A/A allele was not different between HCV patients and healthy controls. TNF-&#946; A/A allele was significantly more common (P &lt; 0.02) in patients (28.8%) as compared to controls (12.8%), whereas no significant difference was observed for TNF-&#946; G/A and G/G alleles. Nco I TNF-&#946; A/A was strongly associated with -308 TNF-&#945; G/G (RR of HCV persistence?=?4.9), indicating possible linkage between TNF-&#946; A/A and TNF- G/G allele. Patients with severe hepatic fibrosis more frequently had the TNF-&#946; A/A allele as compared to patients with mild disease (P?=?0.04). Immunogenetic factors, such as single nucleotide polymorphisms in TNF-&#946; (A/A allele), may affect the natural course of HCV infection, in particular, the disease progression. Larger studies including cytokine expression profiles are needed to fully understand the contribution of the polymorphisms described in the pathogenesis of chronic hepatitis C

    Not Available

    No full text
    Not AvailableSpotted stem borer, Chilo partellus, is the most important constraint for increasing the production and productivity of maize and sorghum, the two major coarse cereals in Asia and Africa. The levels of resistance to this pest in the cultivated germplasm are low to moderate, and hence, farmers have to use insecticides for effective control of this pest. However, there is no information on the detoxification mechanisms in C. partellus, which is one of the constraints for deployment of appropriate insecticides to control this pest. The ability to detoxify insecticides varies across insect populations, and hence, we sequenced different populations of C. partellus to identify and understand detoxification mechanisms to devise appropriate strategies for deployment of different insecticides for controlling this pest. Larval samples were sequenced from three different cohorts of C. partellus using the Illumina HiSeq 2500 platform. The data were subjected to identify putative genes that are involved in detoxification on insecticides in our cohort insect species. These studies resulted in identification of 64 cytochrome P450 genes (CYP450s), and 36 glutathione S-transferases genes (GSTs) encoding metabolic detoxification enzymes, primarily responsible for xenobiotic metabolism in insects. A total of 183 circadian genes with > 80% homolog and 11 olfactory receptor genes that mediate chemical cues were found in the C. partellus genome. Also, target receptors related to insecticide action, 4 acetylcholinesterase (AChE), 14 γ-aminobutyric acid (GABA), and 15 nicotinic acetylcholine (nAChR) receptors were detected. This is the first report of whole genome sequencing of C. partellus useful for understanding mode of action of different insecticides, and mechanisms of detoxification and designing target-specific insecticides to develop appropriate strategies to control C. partellus for sustainable crop production.Not Availabl

    Not Available

    Get PDF
    Not AvailableSpotted stem borer, Chilo partellus, is the most important constraint for increasing the production and productivity of maize and sorghum, the two major coarse cereals in Asia and Africa. The levels of resistance to this pest in the cultivated germplasm are low to moderate, and hence, farmers have to use insecticides for effective control of this pest. However, there is no information on the detoxification mechanisms in C. partellus, which is one of the constraints for deployment of appropriate insecticides to control this pest. The ability to detoxify insecticides varies across insect populations, and hence, we sequenced different populations of C. partellus to identify and understand detoxification mechanisms to devise appropriate strategies for deployment of different insecticides for controlling this pest. Larval samples were sequenced from three different cohorts of C. partellus using the Illumina HiSeq 2500 platform. The data were subjected to identify putative genes that are involved in detoxification on insecticides in our cohort insect species. These studies resulted in identification of 64 cytochrome P450 genes (CYP450s), and 36 glutathione S-transferases genes (GSTs) encoding metabolic detoxification enzymes, primarily responsible for xenobiotic metabolism in insects. A total of 183 circadian genes with > 80% homolog and 11 olfactory receptor genes that mediate chemical cues were found in the C. partellus genome. Also, target receptors related to insecticide action, 4 acetylcholinesterase (AChE), 14 γ-aminobutyric acid (GABA), and 15 nicotinic acetylcholine (nAChR) receptors were detected. This is the first report of whole genome sequencing of C. partellus useful for understanding mode of action of different insecticides, and mechanisms of detoxification and designing target-specific insecticides to develop appropriate strategies to control C. partellus for sustainable crop production.Not Availabl
    corecore