54 research outputs found

    SeDeM as a Tool to Validate Drug Substance Manufacturing Processes and Assess Scalability and Suitability for Direct Compression: Supplier Screening

    Full text link
    During the development of an oral solid form of a drug substance, a thorough understanding of the critical material attributes is necessary, as the physical properties of the active pharmaceutical ingredient (API) can profoundly influence the drug product's manufacturability, critical quality attributes, and bioavailability. The objective of this study was to validate the manufacturing process of the drug Linezolid from three different sources at both the pilot and industrial scale and to identify differences in critical material attributes between the API manufacturers. Furthermore, the scalability factor between the pilot and industrial scale and the suitability of a process for direct compression were also evaluated. In the present study, the different sources of API were characterized by SeDeM methodology, particle size distribution, and scanning electron microscopy determinations. The statistical analysis revealed that no statistically significant differences were found for any of the parameters under study for the same API source analyzed on both scales. On the other hand, for most of the parameters evaluated, statistical differences were observed between the different sources. It was concluded that SeDeM was able to successfully validate the API manufacturing process, assess scalability, and distinguish between sources. Therefore, it could be highly valuable in the formulation phase to select the best API source. Keywords: Linezolid; SeDeM expert system; critical material attribute; critical quality attribute; direct compression; drug substance manufacturers; particle size; powder characterization; preformulation; process validation

    Real-Time In Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue

    Full text link
    This is the peer reviewed version of the following article: B. Lozano-Torres, J. F. Blandez, I. Galiana, A. García-Fernández, M. Alfonso, M. D. Marcos, M. Orzáez, F. Sancenón, R. Martínez-Máñez, Angew. Chem. Int. Ed. 2020, 59, 15152., which has been published in final form at https://doi.org/10.1002/anie.202004142. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] In vivo detection of cellular senescence is accomplished by using mesoporous silica nanoparticles loaded with the NIR-FDA approved Nile blue (NB) dye and capped with a galactohexasaccharide (S3). NB emission at 672 nm is highly quenched inside S3, yet a remarkable emission enhancement is observed upon cap hydrolysis in the presence of beta-galactosidase and dye release. The efficacy of the probe to detect cellular senescence is tested in vitro in melanoma SK-Mel-103 and breast cancer 4T1 cells and in vivo in palbociclib-treated BALB/cByJ mice bearing breast cancer tumor.R.M. thanks financial support from the Spanish Government (RTI2018-100910-B-C41 and RTI2018-101599-B-C22 (MCUI/AEI/FEDER, UE)) and the Generalitat Valenciana (PROMETEO 2018/024). M.O. thanks the financial support from SAF2017-84689-R project and MINECO/AEI/FEDER, UE and the Generalitat Valenciana (PROMETEO/2019/065). B.L.-T. is grateful to the Spanish Ministry of Economy for her PhD grant. I.G. thanks her contract from IDM. J.F.-B. and M.A. thank the UPV for their postdoctoral fellowship.Lozano-Torres, B.; Blandez, JF.; Galiana, I.; García-Fernández, A.; Alfonso-Navarro, M.; Marcos Martínez, MD.; Orzáez, M.... (2020). Real-Time In Vivo Detection of Cellular Senescence through the Controlled Release of the NIR Fluorescent Dye Nile Blue. Angewandte Chemie International Edition. 59(35):15152-15156. https://doi.org/10.1002/anie.202004142S15152151565935He, S., & Sharpless, N. E. (2017). Senescence in Health and Disease. Cell, 169(6), 1000-1011. doi:10.1016/j.cell.2017.05.015Lozano-Torres, B., Estepa-Fernández, A., Rovira, M., Orzáez, M., Serrano, M., Martínez-Máñez, R., & Sancenón, F. (2019). The chemistry of senescence. Nature Reviews Chemistry, 3(7), 426-441. doi:10.1038/s41570-019-0108-0Muñoz-Espín, D., & Serrano, M. (2014). Cellular senescence: from physiology to pathology. Nature Reviews Molecular Cell Biology, 15(7), 482-496. doi:10.1038/nrm3823Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436-453. doi:10.1016/j.tcb.2018.02.001Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., … van Deursen, J. M. (2016). Naturally occurring p16Ink4a-positive cells shorten healthy lifespan. Nature, 530(7589), 184-189. doi:10.1038/nature16932Soto-Gamez, A., & Demaria, M. (2017). Therapeutic interventions for aging: the case of cellular senescence. Drug Discovery Today, 22(5), 786-795. doi:10.1016/j.drudis.2017.01.004Kirkland, J. L., Tchkonia, T., Zhu, Y., Niedernhofer, L. J., & Robbins, P. D. (2017). The Clinical Potential of Senolytic Drugs. Journal of the American Geriatrics Society, 65(10), 2297-2301. doi:10.1111/jgs.14969Niedernhofer, L. J., & Robbins, P. D. (2018). Senotherapeutics for healthy ageing. Nature Reviews Drug Discovery, 17(5), 377-377. doi:10.1038/nrd.2018.44Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25(3), 585-621. doi:10.1016/0014-4827(61)90192-6Zhang, R., & Adams, P. D. (2007). Heterochromatin and its Relationship to Cell Senescence and Cancer Therapy. Cell Cycle, 6(7), 784-789. doi:10.4161/cc.6.7.4079Campisi, J. (2005). Senescent Cells, Tumor Suppression, and Organismal Aging: Good Citizens, Bad Neighbors. Cell, 120(4), 513-522. doi:10.1016/j.cell.2005.02.003Dimri, G. P., Lee, X., Basile, G., Acosta, M., Scott, G., Roskelley, C., … Pereira-Smith, O. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences, 92(20), 9363-9367. doi:10.1073/pnas.92.20.9363Lozano-Torres, B., Galiana, I., Rovira, M., Garrido, E., Chaib, S., Bernardos, A., … Sancenón, F. (2017). An OFF–ON Two-Photon Fluorescent Probe for Tracking Cell Senescence in Vivo. Journal of the American Chemical Society, 139(26), 8808-8811. doi:10.1021/jacs.7b04985Asanuma, D., Sakabe, M., Kamiya, M., Yamamoto, K., Hiratake, J., Ogawa, M., … Urano, Y. (2015). Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. Nature Communications, 6(1). doi:10.1038/ncomms7463Muñoz-Espín, D. (2019). Nanocarriers targeting senescent cells. Translational Medicine of Aging, 3, 1-5. doi:10.1016/j.tma.2019.01.001Ekpenyong-Akiba, A. E., Canfarotta, F., Abd H., B., Poblocka, M., Casulleras, M., Castilla-Vallmanya, L., … Macip, S. (2019). Detecting and targeting senescent cells using molecularly imprinted nanoparticles. Nanoscale Horizons, 4(3), 757-768. doi:10.1039/c8nh00473kAlberti, S., Soler-Illia, G. J. A. A., & Azzaroni, O. (2015). Gated supramolecular chemistry in hybrid mesoporous silica nanoarchitectures: controlled delivery and molecular transport in response to chemical, physical and biological stimuli. Chemical Communications, 51(28), 6050-6075. doi:10.1039/c4cc10414eDe la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie International Edition, 48(32), 5884-5887. doi:10.1002/anie.200900880Bernardos, A., Aznar, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., … Amorós, P. (2009). Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose. Angewandte Chemie, 121(32), 5998-6001. doi:10.1002/ange.200900880Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 51(42), 10556-10560. doi:10.1002/anie.201204663Agostini, A., Mondragón, L., Bernardos, A., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., … Murguía, J. R. (2012). Targeted Cargo Delivery in Senescent Cells Using Capped Mesoporous Silica Nanoparticles. Angewandte Chemie, 124(42), 10708-10712. doi:10.1002/ange.201204663Muñoz‐Espín, D., Rovira, M., Galiana, I., Giménez, C., Lozano‐Torres, B., Paez‐Ribes, M., … Serrano, M. (2018). A versatile drug delivery system targeting senescent cells. EMBO Molecular Medicine, 10(9). doi:10.15252/emmm.201809355Mérian, J., Gravier, J., Navarro, F., & Texier, I. (2012). Fluorescent Nanoprobes Dedicated to in Vivo Imaging: From Preclinical Validations to Clinical Translation. Molecules, 17(5), 5564-5591. doi:10.3390/molecules17055564Fu, W., Yan, C., Guo, Z., Zhang, J., Zhang, H., Tian, H., & Zhu, W.-H. (2019). Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. Journal of the American Chemical Society, 141(7), 3171-3177. doi:10.1021/jacs.8b12820Ovchinnikov, O. V., Evtukhova, A. V., Kondratenko, T. S., Smirnov, M. S., Khokhlov, V. Y., & Erina, O. V. (2016). Manifestation of intermolecular interactions in FTIR spectra of methylene blue molecules. Vibrational Spectroscopy, 86, 181-189. doi:10.1016/j.vibspec.2016.06.016Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jGarcía‐Fernández, A., Aznar, E., Martínez‐Máñez, R., & Sancenón, F. (2019). New Advances in In Vivo Applications of Gated Mesoporous Silica as Drug Delivery Nanocarriers. Small, 16(3), 1902242. doi:10.1002/smll.201902242Kozlovskaya, V., Xue, B., & Kharlampieva, E. (2016). Shape-Adaptable Polymeric Particles for Controlled Delivery. Macromolecules, 49(22), 8373-8386. doi:10.1021/acs.macromol.6b01740Mishra, D. K., Shandilya, R., & Mishra, P. K. (2018). Lipid based nanocarriers: a translational perspective. Nanomedicine: Nanotechnology, Biology and Medicine, 14(7), 2023-2050. doi:10.1016/j.nano.2018.05.021Seidi, F., Jenjob, R., Phakkeeree, T., & Crespy, D. (2018). Saccharides, oligosaccharides, and polysaccharides nanoparticles for biomedical applications. Journal of Controlled Release, 284, 188-212. doi:10.1016/j.jconrel.2018.06.026Chen, W., Zhou, S., Ge, L., Wu, W., & Jiang, X. (2018). Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules, 19(6), 1732-1745. doi:10.1021/acs.biomac.8b00218Vázquez-González, M., & Willner, I. (2018). DNA-Responsive SiO2 Nanoparticles, Metal–Organic Frameworks, and Microcapsules for Controlled Drug Release. Langmuir, 34(49), 14692-14710. doi:10.1021/acs.langmuir.8b00478Farid, R. M., Youssef, N. A. H. A., & Kassem, A. A. (2018). Platform for Lipid Based Nanocarriers’ Formulation Components and their Potential Effects: A Literature Review. Current Pharmaceutical Design, 23(43), 6613-6629. doi:10.2174/1381612824666171128104814Lombardo, D., Calandra, P., Barreca, D., Magazù, S., & Kiselev, M. (2016). Soft Interaction in Liposome Nanocarriers for Therapeutic Drug Delivery. Nanomaterials, 6(7), 125. doi:10.3390/nano6070125Bansal, A., & Zhang, Y. (2014). Photocontrolled Nanoparticle Delivery Systems for Biomedical Applications. Accounts of Chemical Research, 47(10), 3052-3060. doi:10.1021/ar500217wKamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602-2663. doi:10.1021/acs.chemrev.5b00346Trewyn, B. G., Slowing, I. I., Giri, S., Chen, H.-T., & Lin, V. S.-Y. (2007). Synthesis and Functionalization of a Mesoporous Silica Nanoparticle Based on the Sol–Gel Process and Applications in Controlled Release. Accounts of Chemical Research, 40(9), 846-853. doi:10.1021/ar600032

    A correlative biomarker study and integrative prognostic model in chemotherapy-naïve metastatic castration-resistant prostate cancer treated with enzalutamide

    Get PDF
    There is a considerable need to incorporate biomarkers of resistance to new antiandrogen agents in the management of castration-resistant prostate cancer (CRPC). We conducted a phase II trial of enzalutamide in first-line chemo-naïve asymptomatic or minimally symptomatic mCRPC and analyzed the prognostic value of TMPRSS2-ERG and other biomarkers, including circulating tumor cells (CTCs), androgen receptor splice variant (AR-V7) in CTCs and plasma Androgen Receptor copy number gain (AR-gain). These biomarkers were correlated with treatment response and survival outcomes and developed a clinical-molecular prognostic model using penalized cox-proportional hazard model. This model was validated in an independent cohort. Ninety-eight patients were included. TMPRSS2-ERG fusion gene was detected in 32 patients with no differences observed in efficacy outcomes. CTC detection was associated with worse outcome and AR-V7 in CTCs was associated with increased rate of progression as best response. Plasma AR gain was strongly associated with an adverse outcome, with worse median prostate specific antigen (PSA)-PFS (4.2 vs. 14.7 m; p < 0.0001), rad-PFS (4.5 vs. 27.6 m; p < 0.0001), and OS (12.7 vs. 38.1 m; p < 0.0001). The clinical prognostic model developed in PREVAIL was validated (C-Index 0.70) and the addition of plasma AR (C-Index 0.79; p < 0.001) increased its prognostic ability. We generated a parsimonious model including alkaline phosphatase (ALP); PSA and AR gain (C-index 0.78) that was validated in an independent cohort. TMPRSS2-ERG detection did not correlate with differential activity of enzalutamide in first-line mCRPC. However, we observed that CTCs and plasma AR gain were the most relevant biomarkers

    Safety and preliminary efficacy on cognitive performance and adaptive functionality of epigallocatechin gallate (EGCG) in children with Down syndrome. A randomized phase Ib clinical trial (PERSEUS study)

    Full text link
    Purpose: Although some caregivers are using epigallocatechin gallate (EGCG) off label in hopes of improving cognition in young adults with Down syndrome (DS), nothing is known about its safety, tolerability, and efficacy in the DS pediatric population. We aimed to evaluate safety and tolerability of a dietary supplement containing EGCG and if EGCG improves cognitive and functional performance. Methods: A total of 73 children with DS (aged 6-12 years) were randomized. Participants received 0.5% EGCG (10 mg/kg daily dose) or placebo for 6 months with 3 months follow up after treatment discontinuation. Results: In total, 72 children were treated and 66 completed the study. A total of 38 participants were included in the EGCG group and 35 in the placebo group. Of 72 treated participants, 62 (86%) had 229 treatment-emergent adverse events (AEs). Of 37 participants in the EGCG group, 13 (35%) had 18 drug-related treatment-emergent AEs and 12 of 35 (34%) from the placebo group had 22 events. In the EGCG group, neither severe AEs nor increase in the incidence of AEs related to safety biomarkers were observed. Cognition and functionality were not improved compared with placebo. Secondary efficacy outcomes in girls point to a need for future work. Conclusion: The use of EGCG is safe and well-tolerated in children with DS, but efficacy results do not support its use in this population. (C) 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical Genetics and Genomics

    Spread of a SARS-CoV-2 variant through Europe in the summer of 2020.

    Get PDF
    Following its emergence in late 2019, the spread of SARS-CoV-21,2 has been tracked by phylogenetic analysis of viral genome sequences in unprecedented detail3–5. Although the virus spread globally in early 2020 before borders closed, intercontinental travel has since been greatly reduced. However, travel within Europe resumed in the summer of 2020. Here we report on a SARS-CoV-2 variant, 20E (EU1), that was identified in Spain in early summer 2020 and subsequently spread across Europe. We find no evidence that this variant has increased transmissibility, but instead demonstrate how rising incidence in Spain, resumption of travel, and lack of effective screening and containment may explain the variant’s success. Despite travel restrictions, we estimate that 20E (EU1) was introduced hundreds of times to European countries by summertime travellers, which is likely to have undermined local efforts to minimize infection with SARS-CoV-2. Our results illustrate how a variant can rapidly become dominant even in the absence of a substantial transmission advantage in favourable epidemiological settings. Genomic surveillance is critical for understanding how travel can affect transmission of SARS-CoV-2, and thus for informing future containment strategies as travel resumes. © 2021, The Author(s), under exclusive licence to Springer Nature Limited

    Plasma lipid profiles discriminate bacterial from viral infection in febrile children

    Get PDF
    Fever is the most common reason that children present to Emergency Departments. Clinical signs and symptoms suggestive of bacterial infection are often non-specific, and there is no definitive test for the accurate diagnosis of infection. The 'omics' approaches to identifying biomarkers from the host-response to bacterial infection are promising. In this study, lipidomic analysis was carried out with plasma samples obtained from febrile children with confirmed bacterial infection (n = 20) and confirmed viral infection (n = 20). We show for the first time that bacterial and viral infection produces distinct profile in the host lipidome. Some species of glycerophosphoinositol, sphingomyelin, lysophosphatidylcholine and cholesterol sulfate were higher in the confirmed virus infected group, while some species of fatty acids, glycerophosphocholine, glycerophosphoserine, lactosylceramide and bilirubin were lower in the confirmed virus infected group when compared with confirmed bacterial infected group. A combination of three lipids achieved an area under the receiver operating characteristic (ROC) curve of 0.911 (95% CI 0.81 to 0.98). This pilot study demonstrates the potential of metabolic biomarkers to assist clinicians in distinguishing bacterial from viral infection in febrile children, to facilitate effective clinical management and to the limit inappropriate use of antibiotics

    Identification of regulatory variants associated with genetic susceptibility to meningococcal disease.

    Get PDF
    Non-coding genetic variants play an important role in driving susceptibility to complex diseases but their characterization remains challenging. Here, we employed a novel approach to interrogate the genetic risk of such polymorphisms in a more systematic way by targeting specific regulatory regions relevant for the phenotype studied. We applied this method to meningococcal disease susceptibility, using the DNA binding pattern of RELA - a NF-kB subunit, master regulator of the response to infection - under bacterial stimuli in nasopharyngeal epithelial cells. We designed a custom panel to cover these RELA binding sites and used it for targeted sequencing in cases and controls. Variant calling and association analysis were performed followed by validation of candidate polymorphisms by genotyping in three independent cohorts. We identified two new polymorphisms, rs4823231 and rs11913168, showing signs of association with meningococcal disease susceptibility. In addition, using our genomic data as well as publicly available resources, we found evidences for these SNPs to have potential regulatory effects on ATXN10 and LIF genes respectively. The variants and related candidate genes are relevant for infectious diseases and may have important contribution for meningococcal disease pathology. Finally, we described a novel genetic association approach that could be applied to other phenotypes

    CIBERER : Spanish national network for research on rare diseases: A highly productive collaborative initiative

    Get PDF
    Altres ajuts: Instituto de Salud Carlos III (ISCIII); Ministerio de Ciencia e Innovación.CIBER (Center for Biomedical Network Research; Centro de Investigación Biomédica En Red) is a public national consortium created in 2006 under the umbrella of the Spanish National Institute of Health Carlos III (ISCIII). This innovative research structure comprises 11 different specific areas dedicated to the main public health priorities in the National Health System. CIBERER, the thematic area of CIBER focused on rare diseases (RDs) currently consists of 75 research groups belonging to universities, research centers, and hospitals of the entire country. CIBERER's mission is to be a center prioritizing and favoring collaboration and cooperation between biomedical and clinical research groups, with special emphasis on the aspects of genetic, molecular, biochemical, and cellular research of RDs. This research is the basis for providing new tools for the diagnosis and therapy of low-prevalence diseases, in line with the International Rare Diseases Research Consortium (IRDiRC) objectives, thus favoring translational research between the scientific environment of the laboratory and the clinical setting of health centers. In this article, we intend to review CIBERER's 15-year journey and summarize the main results obtained in terms of internationalization, scientific production, contributions toward the discovery of new therapies and novel genes associated to diseases, cooperation with patients' associations and many other topics related to RD research
    corecore