10 research outputs found

    Observation of inverse Compton emission from a long Îł-ray burst.

    Get PDF
    Long-duration γ-ray bursts (GRBs) originate from ultra-relativistic jets launched from the collapsing cores of dying massive stars. They are characterized by an initial phase of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt band, which is probably produced within the jet and lasts from milliseconds to minutes, known as the prompt emission1,2. Subsequently, the interaction of the jet with the surrounding medium generates shock waves that are responsible for the afterglow emission, which lasts from days to months and occurs over a broad energy range from the radio to the gigaelectronvolt bands1-6. The afterglow emission is generally well explained as synchrotron radiation emitted by electrons accelerated by the external shock7-9. Recently, intense long-lasting emission between 0.2 and 1 teraelectronvolts was observed from GRB 190114C10,11. Here we report multi-frequency observations of GRB 190114C, and study the evolution in time of the GRB emission across 17 orders of magnitude in energy, from 5 × 10-6 to 1012 electronvolts. We find that the broadband spectral energy distribution is double-peaked, with the teraelectronvolt emission constituting a distinct spectral component with power comparable to the synchrotron component. This component is associated with the afterglow and is satisfactorily explained by inverse Compton up-scattering of synchrotron photons by high-energy electrons. We find that the conditions required to account for the observed teraelectronvolt component are typical for GRBs, supporting the possibility that inverse Compton emission is commonly produced in GRBs

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    MAGIC very large zenith angle observations of the Crab Nebula up to 100 TeV

    Get PDF
    Aims. We measure the Crab Nebula Îł-ray spectral energy distribution in the ~100 TeV energy domain and test the validity of existing leptonic emission models at these high energies. Methods. We used the novel very large zenith angle observations with the MAGIC telescope system to increase the collection area above 10 TeV. We also developed an auxiliary procedure of monitoring atmospheric transmission in order to assure proper calibration of the accumulated data. This employs recording optical images of the stellar field next to the source position, which provides a better than 10% accuracy for the transmission measurements. Results. We demonstrate that MAGIC very large zenith angle observations yield a collection area larger than a square kilometer. In only ~ 56 h of observations, we detect the Îł-ray emission from the Crab Nebula up to 100 TeV, thus providing the highest energy measurement of this source to date with Imaging Atmospheric Cherenkov Telescopes. Comparing accumulated and archival MAGIC and Fermi/LAT data with some of the existing emission models, we find that none of them provides an accurate description of the 1 GeV to 100 TeV Îł-ray signal

    Functional susceptibility of tropical forests to climate change

    No full text
    Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forestsʌ functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions

    Functional susceptibility of tropical forests to climate change

    No full text
    Tropical forests are some of the most biodiverse ecosystems in the world, yet their functioning is threatened by anthropogenic disturbances and climate change. Global actions to conserve tropical forests could be enhanced by having local knowledge on the forestsʌ functional diversity and functional redundancy as proxies for their capacity to respond to global environmental change. Here we create estimates of plant functional diversity and redundancy across the tropics by combining a dataset of 16 morphological, chemical and photosynthetic plant traits sampled from 2,461 individual trees from 74 sites distributed across four continents together with local climate data for the past half century. Our findings suggest a strong link between climate and functional diversity and redundancy with the three trait groups responding similarly across the tropics and climate gradient. We show that drier tropical forests are overall less functionally diverse than wetter forests and that functional redundancy declines with increasing soil water and vapour pressure deficits. Areas with high functional diversity and high functional redundancy tend to better maintain ecosystem functioning, such as aboveground biomass, after extreme weather events. Our predictions suggest that the lower functional diversity and lower functional redundancy of drier tropical forests, in comparison with wetter forests, may leave them more at risk of shifting towards alternative states in face of further declines in water availability across tropical regions

    Multi-messenger characterization of Mrk 501 during historically low X-ray and Îł\gamma-ray activity

    No full text
    International audienceWe study the broadband emission of the TeV blazar Mrk501 using multi-wavelength (MWL) observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi-LAT, NuSTAR, Swift, GASP-WEBT, and OVRO. During this period, Mrk501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Despite the low activity, significant flux variations are detected at all wavebands, with the highest variations occurring at X-rays and VHE Îł\gamma-rays. A significant correlation (>3σ\sigma) between X-rays and VHE Îł\gamma-rays is measured, supporting leptonic scenarios to explain the variable parts of the spectral energy distribution (SED), also during low activity states. Extending our data set to 12-years (from 2008 to 2020), we find significant correlations between X-rays and HE Îł\gamma-rays, indicating, for the first time, a common physical origin driving the variability between these two bands. We additionally find a correlation between HE Îł\gamma-rays and radio, with the radio emission lagging the HE Îł\gamma-ray emission by more than 100 days. This is consistent with the Îł\gamma-ray emission zone being located upstream of the radio-bright regions of the Mrk501 jet. Furthermore, Mrk501 showed a historically low activity in both X-rays and VHE Îł\gamma-rays from mid-2017 to mid-2019 with a stable VHE flux (>2TeV) of 5% the emission of the Crab Nebula. The broadband SED of this 2-year long low-state, the potential baseline emission of Mrk501, can be adequately characterized with a one-zone leptonic model, and with (lepto)-hadronic models that fulfill the neutrino flux constraints from IceCube. We explore the time evolution of the SED towards the historically low-state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock

    Multi-messenger characterization of Mrk 501 during historically low X-ray and Îł\gamma-ray activity

    No full text
    We study the broadband emission of the TeV blazar Mrk501 using multi-wavelength (MWL) observations from 2017 to 2020 performed with a multitude of instruments, involving, among others, MAGIC, Fermi-LAT, NuSTAR, Swift, GASP-WEBT, and OVRO. During this period, Mrk501 showed an extremely low broadband activity, which may help to unravel its baseline emission. Despite the low activity, significant flux variations are detected at all wavebands, with the highest variations occurring at X-rays and VHE Îł\gamma-rays. A significant correlation (>3σ\sigma) between X-rays and VHE Îł\gamma-rays is measured, supporting leptonic scenarios to explain the variable parts of the spectral energy distribution (SED), also during low activity states. Extending our data set to 12-years (from 2008 to 2020), we find significant correlations between X-rays and HE Îł\gamma-rays, indicating, for the first time, a common physical origin driving the variability between these two bands. We additionally find a correlation between HE Îł\gamma-rays and radio, with the radio emission lagging the HE Îł\gamma-ray emission by more than 100 days. This is consistent with the Îł\gamma-ray emission zone being located upstream of the radio-bright regions of the Mrk501 jet. Furthermore, Mrk501 showed a historically low activity in both X-rays and VHE Îł\gamma-rays from mid-2017 to mid-2019 with a stable VHE flux (>2TeV) of 5% the emission of the Crab Nebula. The broadband SED of this 2-year long low-state, the potential baseline emission of Mrk501, can be adequately characterized with a one-zone leptonic model, and with (lepto)-hadronic models that fulfill the neutrino flux constraints from IceCube. We explore the time evolution of the SED towards the historically low-state, revealing that the stable baseline emission may be ascribed to a standing shock, and the variable emission to an additional expanding or traveling shock

    Multi-messenger Observations of a Binary Neutron Star Merger

    No full text
    International audienceOn 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ∌1.7 s\sim 1.7\,{\rm{s}} with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg(2) at a luminosity distance of 40−8+8{40}_{-8}^{+8} Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26  M⊙\,{M}_{\odot }. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ∌40 Mpc\sim 40\,{\rm{Mpc}}) less than 11 hours after the merger by the One-Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ∌10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ∌9\sim 9 and ∌16\sim 16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC 4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore