5 research outputs found

    The environment topography alters the way to multicellularity in Myxococcus xanthus.

    Full text link
    peer reviewedThe social soil-dwelling bacterium Myxococcus xanthus can form multicellular structures, known as fruiting bodies. Experiments in homogeneous environments have shown that this process is affected by the physicochemical properties of the substrate, but they have largely neglected the role of complex topographies. We experimentally demonstrate that the topography alters single-cell motility and multicellular organization in M. xanthus In topographies realized by randomly placing silica particles over agar plates, we observe that the cells' interaction with particles drastically modifies the dynamics of cellular aggregation, leading to changes in the number, size, and shape of the fruiting bodies and even to arresting their formation in certain conditions. We further explore this type of cell-particle interaction in a computational model. These results provide fundamental insights into how the environment topography influences the emergence of complex multicellular structures from single cells, which is a fundamental problem of biological, ecological, and medical relevance

    Host Environment Shapes S. aureus Social Behavior as Revealed by Microscopy Pattern Formation and Dynamic Aggregation Analysis

    No full text
    Understanding how bacteria adapt their social behavior to environmental changes is of crucial importance from both biological and clinical perspectives. Staphylococcus aureus is among the most common infecting agents in orthopedics, but its recalcitrance to the immune system and to antimicrobial treatments in the physiological microenvironment are still poorly understood. By means of optical and confocal microscopy, image pattern analysis, and mathematical modeling, we show that planktonic biofilm-like aggregates and sessile biofilm lifestyles are two co-existing and interacting phases of the same environmentally adaptive developmental process and that they exhibit substantial differences when S. aureus is grown in physiological fluids instead of common lab media. Physicochemical properties of the physiological microenvironment are proposed to be the key determinants of these differences. Besides providing a new tool for biofilm phenotypic analysis, our results suggest new insights into the social behavior of S. aureus in physiological conditions and highlight the inadequacy of commonly used lab media for both biological and clinical studies of bacterial development

    Raw data

    No full text
    Raw data of Myxococcus xanthus fruiting bodies phenotypic trait

    Data from: Plastic multicellular development of Myxococcus xanthus: genotype-environment interactions in a physical gradient

    No full text
    In order to investigate the contribution of the physical environment to variation in multicellular development of Myxococcus xanthus, phenotypes developed by different genotypes in a gradient of substrate stiffness conditions were quantitatively characterized. Statistical analysis showed that plastic phenotypes result from the genotype, the substrate conditions and the interaction between them. Also, phenotypes were expressed in two distinguishable scales, the individual and the population levels, and the interaction with the environment showed scale and trait specificity. Overall, our results highlight the constructive role of the physical context in the development of microbial multicellularity, with both ecological and evolutionary implications
    corecore