79 research outputs found

    CHARACTERIZATION OF THE FECAL MICROBIOME IN DOGS RECEIVING MEDICAL MANAGEMENT FOR CONGENITAL PORTOSYSTEMIC SHUNTS

    Get PDF
    Background: The GI microbiome has not been characterized in dogs being medically managed for congenital portosystemic shunts [CPSS]. Objectives: To characterize the fecal microbiome in a population of dogs being medically managed for CPSS. Animals: 27 client-owned dogs. Methods: Prospective cohort study enrollment of fecal samples was performed with follow-up data collected retrospectively. The overall fecal dysbiosis index [DI] and individual bacterial abundances were determined using real-time qPCR. Medical management, clinical findings, clinicopathologic, and outcome variables were collected, and logistic regression analyses were performed to evaluate associations between these variables and overall DI and bacterial abundances. Numerical variables were evaluated with general linear models. Results: All dogs were administered a therapeutic hepatic diet and lactulose, while antibiotics were used in 22 (81.5%) and acid suppressants in seven (25.9%). Seventeen dogs (63.0%) had a DI \u3e 2. The median DI in this population was 3.02 (range, 4.23-8.42), and the median DI in dogs receiving and not receiving antibiotics was 4.3 (range, -4.23 – 8.42) and 1.52 (range, -1.62 – 5.43), respectively. No significant association between any of the analyzed variables and the DI was identified. The abundance of E. coli was positively significantly affected by the use of metronidazole (p = 0.024). Conclusions and clinical importance: Dysbiosis appears to be common in dogs that are being medically managed for CPSS, though the clinical significance remains unclear

    Mathematical Modelling of Highway Traffic Policies

    Get PDF
    Extensive research has been done to model and simulate traffic flow in order to answer valuable questions in the implementation of different traffic policies. A major open question is whether or not the stay right except to pass rule is an efficient traffic policy in terms of traffic flow and safety. We develop a particle-interaction based model which stems from how cars react and make decisions using locally restricted knowledge and observe how snapshots of these processes over a large closed continuous road govern the dynamics of the overall traffic flow. Through computer simulation, we observe and analyze the difference among four traffic policies or rules which determine how cars react to an impending accident: 1) passing on the left or right if able (free passing); 2) passing strictly on the left and then returning to right most lane (single driving); 3) passing on the left and then returning to any open lane on the right (single passing); and 4) not allowing any passing (no passing) in both low and high density traffic. This presentation received a College of the Sciences Best Oral Presentation Award for 2014

    Characterization of the Fecal Microbiome in Dogs Receiving Medical Management for Congenital Portosystemic Shunts

    Get PDF
    BackgroundThe GI microbiome has not been characterized in dogs being medically managed for congenital portosystemic shunts (CPSS).ObjectivesTo characterize the fecal microbiome in a population of dogs being medically managed for CPSS.Animals27 client-owned dogs.MethodsProspective cohort study enrollment of fecal samples was performed with follow-up data collected retrospectively. The overall fecal dysbiosis index (DI) and individual bacterial abundances were determined using real-time qPCR. Medical management, clinical findings, clinicopathologic, and outcome variables were collected, and logistic regression analyses were performed to evaluate associations between these variables and overall DI and bacterial abundances. Numerical variables were evaluated with general linear models for normality and equal variance using Shapiro-Wilk test and Levene's test, respectively.ResultsAll dogs were administered a hepatic diet and lactulose, while antibiotics were used in 22 (81.5%) and acid suppressants in 7 (25.9%). Seventeen dogs (63.0%) had a DI >2. The median DI in this population was 3.02 (range 4.23–8.42), and the median DI in dogs receiving and not receiving antibiotics was 4.3 (range −4.23–8.42) and 1.52 (range −1.62–5.43), respectively. No significant association between any of the analyzed variables and the DI was identified. There was a significant association between the use of metronidazole and a larger abundance of E. coli (p = 0.024).Conclusions and Clinical ImportanceDysbiosis appears to be common in dogs that are being medically managed for CPSS, though the clinical significance remains unclear

    Drug-Resistant Tuberculosis--Current Dilemmas, Unanswered Questions, Challenges and Priority Needs

    Get PDF
    Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis–specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR tuberculosis are discussed

    Tuberculosis diagnostics and biomarkers: needs, challenges, recent advances, and opportunities

    Get PDF
    Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within communities. Currently recommended gold-standard diagnostic tests for tuberculosis are laboratory based, and multiple investigations may be necessary over a period of weeks or months before a diagnosis is made. Several new diagnostic tests have recently become available for detecting active tuberculosis disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. In the absence of effective prevention strategies, high rates of early case detection and subsequent cure are required for global tuberculosis control. Early case detection is dependent on test accuracy, accessibility, cost, and complexity, but also depends on the political will and funder investment to deliver optimal, sustainable care to those worst affected by the tuberculosis and human immunodeficiency virus epidemics. This review highlights unanswered questions, challenges, recent advances, unresolved operational and technical issues, needs, and opportunities related to tuberculosis diagnostics

    Drug-Resistant Tuberculosis—Current Dilemmas, Unanswered Questions, Challenges, and Priority Needs

    Get PDF
    Tuberculosis was declared a global emergency by the World Health Organization (WHO) in 1993. Following the declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation and reveals an urgent need for commitment by national programs to health system improvement because the response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted activity and >12 years of MDR tuberculosis-specific activity, has the country response to the drug-resistant tuberculosis epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and prevention of DR tuberculosis are discusse

    Tuberculosis Diagnostics and Biomarkers: Needs, Challenges, Recent Advances, and Opportunities

    Get PDF
    Tuberculosis is unique among the major infectious diseases in that it lacks accurate rapid point-of-care diagnostic tests. Failure to control the spread of tuberculosis is largely due to our inability to detect and treat all infectious cases of pulmonary tuberculosis in a timely fashion, allowing continued Mycobacterium tuberculosis transmission within communities. Currently recommended gold-standard diagnostic tests for tuberculosis are laboratory based, and multiple investigations may be necessary over a period of weeks or months before a diagnosis is made. Several new diagnostic tests have recently become available for detecting active tuberculosis disease, screening for latent M. tuberculosis infection, and identifying drug-resistant strains of M. tuberculosis. However, progress toward a robust point-of-care test has been limited, and novel biomarker discovery remains challenging. In the absence of effective prevention strategies, high rates of early case detection and subsequent cure are required for global tuberculosis control. Early case detection is dependent on test accuracy, accessibility, cost, and complexity, but also depends on the political will and funder investment to deliver optimal, sustainable care to those worst affected by the tuberculosis and human immunodeficiency virus epidemics. This review highlights unanswered questions, challenges, recent advances, unresolved operational and technical issues, needs, and opportunities related to tuberculosis diagnostic

    Investigating Behaviour and Population Dynamics of Striped Marlin (Kajikia audax) from the Southwest Pacific Ocean with Satellite Tags

    Get PDF
    Behaviour and distribution of striped marlin within the southwest Pacific Ocean were investigated using electronic tagging data collected from 2005–2008. A continuous-time correlated random-walk Kalman filter was used to integrate double-tagging data exhibiting variable error structures into movement trajectories composed of regular time-steps. This state-space trajectory integration approach improved longitude and latitude error distributions by 38.5 km and 22.2 km respectively. Using these trajectories as inputs, a behavioural classification model was developed to infer when, and where, ‘transiting’ and ‘area-restricted’ (ARB) pseudo-behavioural states occurred. ARB tended to occur at shallower depths (108±49 m) than did transiting behaviours (127±57 m). A 16 day post-release period of diminished ARB activity suggests that patterns of behaviour were affected by the capture and/or tagging events, implying that tagged animals may exhibit atypical behaviour upon release. The striped marlin in this study dove deeper and spent greater time at ≥200 m depth than those in the central and eastern Pacific Ocean. As marlin reached tropical latitudes (20–21°S) they consistently reversed directions, increased swimming speed and shifted to transiting behaviour. Reversals in the tropics also coincided with increases in swimming depth, including increased time ≥250 m. Our research provides enhanced understanding of the behavioural ecology of striped marlin. This has implications for the effectiveness of spatially explicit population models and we demonstrate the need to consider geographic variation when standardizing CPUE by depth, and provide data to inform natural and recreational fishing mortality parameters

    A Fear-Inducing Odor Alters PER2 and c-Fos Expression in Brain Regions Involved in Fear Memory

    Get PDF
    Evidence demonstrates that rodents learn to associate a foot shock with time of day, indicating the formation of a fear related time-stamp memory, even in the absence of a functioning SCN. In addition, mice acquire and retain fear memory better during the early day compared to the early night. This type of memory may be regulated by circadian pacemakers outside of the SCN. As a first step in testing the hypothesis that clock genes are involved in the formation of a time-stamp fear memory, we exposed one group of mice to fox feces derived odor (TMT) at ZT 0 and one group at ZT 12 for 4 successive days. A separate group with no exposure to TMT was also included as a control. Animals were sacrificed one day after the last exposure to TMT, and PER2 and c-Fos protein were quantified in the SCN, amygdala, hippocampus, and piriform cortex. Exposure to TMT had a strong effect at ZT 0, decreasing PER2 expression at this time point in most regions except the SCN, and reversing the normal rhythm of PER2 expression in the amygdala and piriform cortex. These changes were accompanied by increased c-Fos expression at ZT0. In contrast, exposure to TMT at ZT 12 abolished the rhythm of PER2 expression in the amygdala. In addition, increased c-Fos expression at ZT 12 was only detected in the central nucleus of the amygdala in the TMT12 group. TMT exposure at either time point did not affect PER2 or c-Fos in the SCN, indicating that under a light-dark cycle, the SCN rhythm is stable in the presence of repeated exposure to a fear-inducing stimulus. Taken together, these results indicate that entrainment to a fear-inducing stimulus leads to changes in PER2 and c-Fos expression that are detected 24 hours following the last exposure to TMT, indicating entrainment of endogenous oscillators in these regions. The observed effects on PER2 expression and c-Fos were stronger during the early day than during the early night, possibly to prepare appropriate systems at ZT 0 to respond to a fear-inducing stimulus
    corecore