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ABSTRACT 
 

 

Background: The GI microbiome has not been characterized in dogs being medically 

managed for congenital portosystemic shunts [CPSS]. 

 

Objectives: To characterize the fecal microbiome in a population of dogs being medically 

managed for CPSS. 

 

Animals: 27 client-owned dogs. 

 

Methods: Prospective cohort study enrollment of fecal samples was performed with 

follow-up data collected retrospectively. The overall fecal dysbiosis index [DI] and 

individual bacterial abundances were determined using real-time qPCR. Medical 

management, clinical findings, clinicopathologic, and outcome variables were collected, 

and logistic regression analyses were performed to evaluate associations between these 

variables and overall DI and bacterial abundances. Numerical variables were evaluated 

with general linear models. 

 

Results: All dogs were administered a therapeutic hepatic diet and lactulose, while 

antibiotics were used in 22/27 (81.5%) dogs and acid suppressants in 7/27 (25.9%) dogs. 

Seventeen dogs (63.0%) had a DI > 2. The median DI in this population was 3.02 (range, 

4.23-8.42), and the median DI in dogs receiving and not receiving antibiotics was 4.3 

(range, -4.23 – 8.42) and 1.52 (range, -1.62 – 5.43), respectively. 

 

No significant association between any of the analyzed variables and the DI was 

identified. The abundance of E. coli was positively significantly affected by the use of 

metronidazole (p = 0.024). 

 

Conclusions and clinical importance: Dysbiosis appears to be common in dogs that are 

being medically managed for CPSS, though the clinical significance remains unclear.  
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CHAPTER ONE  

 

Introduction  

The microbiota of the mammalian gastrointestinal (GI) tract consists of trillions of 

organisms performing a variety of crucial roles both locally and systemically.1-3 

Characterization of the GI microbiome has evolved from culture-based models to high-

throughput DNA sequencing techniques or targeted quantitative polymerase chain 

reaction (qPCR) assays, which have allowed for the characterization of the microbiome at 

the genetic and species level in various species.3-5   

 

Several studies have characterized bacterial populations for the GI flora in healthy 

humans and animals.1-3 Subsequently, extensive research has been performed evaluating 

the GI microbiome characteristics in human and canine populations with specific 

pathologies such as chronic inflammatory enteropathies, diabetes, obesity, and 

hepatopathy-induced hepatic encephalopathy (HE).6-10  By using the previously identified 

healthy control profiles of intestinal microbiota in comparison to the profiles from the 

diseased populations, the concept of a “dysbiosis index” (DI) was established, which 

focuses the analysis of shifts in the microbiome to certain important bacterial groups.4 

Certain alterations in the GI microbiome have been postulated to be a useful adjunct for 

identifying disease states or a potential monitoring parameter for treatment efficacy.4-8,11   

 

The role of the GI microbiome in chronic hepatopathies and HE has been frequently 

investigated in humans, with ammonia being identified as a key player.10,12,13 Significant 

differences have been reported in humans between the colonic microbiota of cirrhosis or 

HE patients and healthy control individuals, and some suggest the microbiome alterations 

in affected patients may contribute to more significant clinical signs of HE via alteration 

of the intestinal barrier function, an increased proportion of urease-producing bacteria, or 

in other ways.11-13,14 Therefore, it has been postulated that manipulation of the 

microbiome may contribute to improved outcomes in these patients.  

 

In dogs, the most common cause of HE is related to congenital portosystemic shunts 

(CPSS).15 Single or multiple aberrant blood vessels allow portal venous blood to bypass 

the liver parenchyma with CPSS.15,16 Medical management for dogs with PSS can 

include a restricted protein diet and administration of lactulose, antibiotics, 

anticonvulsants, or probiotics. Surgical attenuation of the CPSS is often recommended to 

restore more normal portal blood flow and improve liver function. Some individual 

components of medical management for CPSS have been investigated for effects on the 

microbiome in dogs.4,15,17-21 Based on the literature, it is apparent that lactulose, diet, and 

certain antibiotics have the potential to alter the microbiome; however, these studies 

investigate effects in healthy dogs, people, or non-hepatic disease.11,15,16,17-20 Because 

dogs being medically managed for CPSS are often prescribed these medications for long 

periods, this may lead to long term dysbiosis and potential subsequent health 

consequences. 
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There is a deficit in the literature as to the effects of these medications on the fecal 

microbiome and DI in dogs with CPSS and a complete lack of information as to whether 

these effects have any consequences on the clinical signs or outcomes of dogs with 

CPSS. 

 

The aims of the current study were to characterize dysbiosis in dogs presenting with 

CPSS and to evaluate for associations between dysbiosis and clinical variables such as 

medical management, clinical signs, clinicopathologic findings, and postoperative 

outcomes. We hypothesized that medical management for CPSS would have a significant 

impact on the dysbiosis index, but that clinical outcome of the patient would not be 

affected regardless of the level of dysbiosis. 

 

Materials and Methods 

Case selection:  

Dogs presenting to the University of Tennessee College of Veterinary Medicine 

(UTCVM) with a previous diagnosis of CPSS (confirmed either with transsplenic portal 

scintigraphy or computed tomography) were prospectively recruited from June, 2018 to 

August, 2019. 

 

Inclusion criteria:  

Dogs were included in the study following definitive diagnosis of CPSS using either 

CT/angiography or transsplenic nuclear portal scintigraphy and if fecal samples were able 

to be collected at the initial visit prior to surgical intervention for CPSS. All animals were 

enrolled following informed owner consent in accordance with the protocol approved by 

the University of Tennessee Institutional Animal Care and Use Committee (AUP #2641-

0918). Animals were excluded if the fecal sample was not sufficient to be analyzed, if a 

fecal sample was not obtained, or if a fecal sample was not obtained prior to 

administration of perioperative antibiotics for the CPSS attenuation procedure.  

 

Medical record review: 

Information regarding patient signalment (breed size, sex, age, and reproductive status), 

weight, clinical signs prior to medical management (GI signs, neurologic signs, urinary 

signs), medications at the time of sample collection, clinical signs following initiation of 

medical management, preoperative clinicopathologic findings (complete blood count 

(CBC), serum biochemistry panel, pre- and post-prandial serum bile acids, and resting 

plasma ammonia), type of surgical intervention, postoperative clinical outcome, and 

postoperative albumin, BUN, cholesterol, and glucose values. Postoperative 

clinicopathologic and outcome data was obtained via a combination of medical record 

review and communication with referring veterinarians. Clinical management of the dogs 

was not altered for the study parameters, and each dog was managed at the discretion of 

the attending clinician, including adjustments to medical management perioperatively or 

postoperatively and surgical attenuation. In general, each dog was recommended to have 
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a follow-up serum biochemistry panel, CBC, and pre- and post-prandial serum bile acids 

performed between 3-6 months postoperatively. Neurologic signs included seizures, 

ataxia, head pressing, or mental obtundation. Gastrointestinal signs included vomiting, 

diarrhea, or regurgitation, and were considered distinct from anorexia or hyporexia. 

Lower urinary tract signs included hematuria, stranguria, or dysuria.  

 

Closure of the CPSS following surgical intervention was suspected based on the 

following findings in follow-up blood analyses: normalization or improvement of serum 

bile acids22 with improvement or normalization of hepatic synthetic factors such as 

albumin, glucose, cholesterol, or BUN.  

 

Sample collection:  

Fecal samples were either collected via free-catch fecal samples, digital rectal exam, or a 

fecal loop, and stored in a cryogenic storage container. Following fecal collection, the 

samples were immediately stored in a -80-degree Celsius freezer until all samples for 

study inclusion were collected and shipped for analysis. Samples were then shipped on 

dry ice and maintained in a -80 degree Celsius freezer at the Texas A&M Veterinary 

Medical Diagnostic Laboratory until the molecular diagnostics were performed.  

 

Fecal quantitative PCR analysis: 

DNA was extracted from each fecal sample (100 mg) using the MoBio Power soil DNA 

isolation kit (MoBio Laboratories, USA) according to the manufacturer’s instructions. 

The qPCR assays were performed as previously reported by M.K. AlShawaqfeh, et al. In 

summary, qPCR reactions were performed using SYBR green-based reaction mixtures. 

The final total reaction volume was 10 µL. The final mix was composed of 5 µL SsoFast 

EvaGreen supermix (Bio-Rad Laboratories, CA, USA), 0.4 µL each of a forward and 

reverse primer, 2.6 µL of PCR water and 2 µL of normalized DNA. The PCR conditions 

were as follows: initial denaturation at 98°C for 3s and annealing for 3s. Melt curve 

analysis was performed post-amplification using these conditions: 95°C for 1 min, 55°C 

for 1 min and increasing incremental steps of 0.5°C for 80 cycles for 5s each. All samples 

were run in duplicate fashion. The qPCR data were expressed as the log amount of DNA 

(fg) for each particular bacterial group/10 ng of isolated total DNA. Each fecal sample 

was evaluated for the overall bacterial number, as well as the individual bacterial species 

including: Universal Bacteria, Faecalibacterium, Turicibacter, Streptococcus, E. coli, 

Blautia, Fusobacterium, and C. hiranonis. The overall dysbiosis index was then 

calculated for each dog as previously described by AlShawaqfeh, et al.4  

 

The reference ranges for the bacteria tested to determine if the abundance was normal or 

abnormal were expressed as log DNA/gram of feces, and included Universal Bacteria 

(10.6-11.4), Faecalibacterium (3.4-8.0), Turicibacter (4.6-8.1), Streptococcus (1.9-8.0), 

E. coli (0.9-8.0), Blautia (9.5-11.0), Fusobacterium (7.0-10.3), and C. hiranonis (5.1-

7.1).4 The DI was classified as normal DI (< 0), a moderate shift (0-2), or a significant 

shift (> 2). 

 



 

4 

 

Statistical analysis: 

Normality tests were conducted on numeric variables using Shapiro-Wilke tests. 

Descriptive statistics were calculated. Normally distributed data are presented as a mean 

± SD, and non-normally distributed data are expressed as median and range. Logistic 

regression analysis was used to evaluate the effects of clinical variables (clinical signs, 

medical management, clinicopathologic values, and outcome data) on the categorical 

outcomes of bacterial abundance (normal or abnormal) and DI (normal, equivocal, or 

dysbiosis). The effects of clinical variables on numeric outcomes (such as 

clinicopathologic data) were evaluated using general linear models. Diagnostic analysis 

was conducted to examine model assumptions for normality and equal variance using 

Shapiro-Wilk test and Levene's test respectively. Ranked transformation was applied if 

diagnostic analysis exhibited violation of normality and equal variance assumptions. Post 

hoc multiple comparisons were performed with Tukey’s adjustment. Statistical 

significance was identified at the level of 0.05. Analyses were conducted in SAS 9.4 

TS1M7 for Windows 64x (SAS institute Inc., Cary, NC). 

 

Results 

A total of 27 dogs were included in the study in accordance with the inclusion criteria. 

The study population included 17 (63.0%) male dogs and 10 (37.0%) female dogs. Ten 

(58.8%) male dogs were neutered, and 6 (60%) female dogs were spayed. Median age at 

the time of fecal collection was 10 months (range, 3-48). Median body weight at the time 

of collection was 4.9 kg (range, 1.5-32.8).  

Prior to initiation of medical management, documented clinical signs in the dogs of the 

study included neurologic signs in 16/27 (59.3%), gastrointestinal signs in 13/27 (48.1%), 

episodic or persistent anorexia or hyporexia in 11/27 (40.7%), and lower urinary tract 

signs in 5/27 (18.5%).  

 

At the time of fecal collection, medical management had been instituted previously for all 

dogs. Medical management consisted of varying combinations of a therapeutic hepatic 

diet (all dogs), lactulose (all dogs), antibiotics in 22/27 (81.5%), acid suppressants in 7/27 

(25.9%), antiepileptics in 3/27 (11.1%), and probiotics in 2/27 (7.4%). The antibiotics 

most commonly prescribed were metronidazole in 17 dogs receiving antibiotics (77.3%), 

amoxicillin in six (27.3%), and one each of amoxicillin/clavulanic acid (Clavamox, 

Zoetis, Parsippany-Troy Hills, NJ) and neomycin (4.5%). The median duration of 

lactulose administration at the time of fecal collection was 50.5 days (range, 1-842). The 

median duration of antibiotic administration was 45 days (range, 22-842).  

 

Following initiation of medical management, the following clinical signs remained 

present: four (14.8%) with hyporexia or anorexia, three (11.1%) with neurologic signs 

(none with seizures), three (11.1%) with distinct GI signs, and three (11.1%) with lower 

urinary tract signs. Only two dogs developed new clinical signs between the onset of 

medical management and fecal collection - one with hyporexia/anorexia and one with 

lower urinary tract signs. 
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In total, 22/27 (81.5%) dogs underwent surgical intervention for attenuation of CPSS 

including 14 (63.6%) with ameroid constrictor placement and eight (36.4%) with 

percutaneous transvenous coil embolization. Follow-up data was available in 20 (90.9%) 

dogs undergoing surgical intervention for the CPSS, and 13 (65.0%) had bloodwork 

findings suggestive of closure of the PSS based on interpretation of serum bile acids and 

hepatic synthetic factors. 

 

Information pertaining to blood analyses performed during the same hospitalization for 

fecal collection can be found in Table 1. The bacterial abundance as measured in these 

dogs is available in Table 2. In total, 17/27 (63.0%) dogs in the study had a DI of > 2, 

which has previously been reported as the cutoff for dysbiosis in dogs.4 The overall 

median DI in this population of dogs was 3.02 (range 4.23-8.42). The median DI in dogs 

receiving antibiotics was 4.3 (range -4.23 – 8.42), and the median DI in dogs not 

receiving antibiotics was 1.52 (range -1.62 – 5.43) (p = 0.58). 

 

No significant effect on the DI from any of the components of medical management was 

noted. However, the abundance of E. coli was significantly positively affected by the use 

of metronidazole (p = 0.024). No significant effects on the DI or any individual bacterial 

species abundances were identified with amoxicillin, amoxicillin/clavulanic acid, or 

neomycin. Preoperative serum albumin had a significant negative impact on the DI (p = 

0.009), whereas no other clinicopathologic variables had a significant relationship. C. 

hiranonis abundances were significantly positively affected by preoperative serum 

albumin (p = 0.035), serum GGT (p = 0.04), and serum cholesterol (p = 0.023). E. coli 

abundances were significantly negatively affected by increasing preoperative platelet 

count (p = 0.04), lymphocytes (p = 0.049), and BUN (p = 0.016). 

 

Discussion 

The current study is the first in the veterinary literature to describe evaluation of the 

dysbiosis index in a cohort of dogs diagnosed with CPSS. Given the fact that many dogs 

with CPSS are administered medications to mitigate the clinical signs secondary to CPSS 

and that these medications are known to affect overall dysbiosis, evaluating these 

interactions is important to further understand treatment effects on these patients.4,15,18-20 

The overall rate of dysbiosis (DI >2) in the study population was relatively high at 

63.0%, but no significant associations were identified between the DI and any individual 

component of medical management or clinical signs. Additionally, there was no 

significant association between the DI and clinical outcome or any of the 

clinicopathologic findings apart from a negative association with preoperative albumin. 

Additionally, significant associations between certain parameters and the abundance of 

individual bacterial species were also identified.  

 

The role of the human GI microbiome in chronic hepatopathies and HE is well 

established.10,21 Significant differences have been shown in the colonic microbiota of 

human patients with cirrhosis or HE and healthy control individuals, and some authors 
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Table 1. Blood analytes. Summarized data for clinicopathologic variables for the study population. 

Post-operatively, only synthetic hepatic factors and serum bile acids were analyzed. Numerical values for 

post-operative serum bile acids were not recorded, but rather if there was an improvement or not as 

compared to the preoperative values. All reference ranges are those used for the University of Tennessee 

College of Veterinary Medicine, aside from resting ammonia.42 

Abbreviations: BUN, blood urea nitrogen; ALT, alanine aminotransferase; ALP, alkaline phosphatase; 

GGT, gamma-glutamyl transferase; PCV, packed cell volume 

 

Blood 

Analyte 

Number of 

cases tested 

at 

presentation 

Median 

(range) 

Number of 

cases tested 

postoperatively 

Median 

(range) 

Reference 

Range 

Serum Biochemistry  

Albumin 

(g/dL) 

26 2.5 (1.8-3.6) 19 3.0 (2.4-

4.1) 

3.0-4.3 

Globulins 

(g/dL) 

26 3.45 (1.5-

4.8) 

N/A N/A 2.6-4.7 

Cholesterol 

(mg/dL) 

25 178 (64-

420) 

14 229.5 

(174-290) 

74-255 

BUN 

(mg/dL) 

27 5 (2-13) 19 8.5 (4-26) 18-40 

Glucose 

(mg/dL) 

27 107 (51-

121) 

19 88 (80-

195) 

87-179 

ALT (IU/L) 26 82.5 (31-

516) 

N/A N/A 29-109 

ALP (IU/L) 26 111 (41-

441) 

N/A N/A 12-79 

GGT (IU/L) 26 3 (2-13) N/A N/A 0-5 

Total 

bilirubin 

(mg/dL) 

26 0.4 (0.1-0.7) N/A N/A 0.1-0.7 

Complete Blood Count  

PCV (%) 27 36.1 (28.0-

50.5) 

N/A N/A 34-48 

Total Protein 

(g/dL) 

26 5.95 (3.3-

7.3) 

N/A N/A 6.6-8.4 

White blood 

cells 

(x10E3/uL) 

26 13.6 (9.5-

20.0) 

N/A N/A 4.7-15.3 

Neutrophils 

(x10E3/uL) 

26 9.2 (3.8-

17.8) 

N/A N/A 2.00-9.20 

Lymphocytes 

(x10E3/uL) 

26 9.5 (1.19-

15.8) 

N/A N/A 1.05-8.00 
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Table 1 continued 

 

Platelets 

(x10E3/uL) 

26 196.5 (103-

395) 

N/A N/A 169-480 

Liver Function Tests 

Pre-prandial 

Bile Acids 

(µg/dL) 

22 182.2 (0-

318.8) 

18 N/A 0-30 

Post-

Prandial Bile 

Acids 

(µg/dL) 

23 209.1 (69-

382.3) 

18 N/A 0-10 

Resting 

Ammonia 

(µmol/L) 

13 140 (66-864.4) N/A N/A <70 

µmol/L42 

 

 

 

 

 

Table 2. Bacterial abundance. Summary of the various bacterial abundances present in the study 

population. Reference intervals were established in 120 healthy dogs.4 
 

Bacteria Abundance 

Reference 

Interval (log 

DNA/gram feces) 

Median (range) Number of 

Dogs Outside 

Reference 

Interval (%) 

Number of 

Dogs 

Within 

Reference 

Interval (%) 

Universal 

Bacteria 

10.6-11.4 10.9 (10.43-

13.22) 

6 (22.2%) 21 (77.8%) 

Faecalibacterium 3.4-8.0 7.28 (3.45-

7.32) 

2 (7.4%) 25 (92.6%) 

Turicibacter 4.6-8.1 7.46 (3.25-

9.13) 

7 (25.9%) 20 (74.1%) 

Streptococcus 1.9-8.0 6.05 (2.14-8.2) 1 (3.7%) 26 (96.3%) 

E. coli 0.9-8.0 8.15 (0.88-

8.77) 

6 (22.2%) 21 (77.8%) 

Blautia 9.5-11.0 11.23 (6.04-

12.25) 

14 (51.9%) 13 (48.1%) 

Fusobacterium 7.0-10.3 9.69 (6.51-

11.63) 

8 (29.6%) 19 (70.4%) 

C. hiranonis 5.1-7.1 3.07 (0.01-

6.84) 

19 (70.4%) 8 (29.6%) 
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suggest that the alterations in the microbiome in these patients may contribute to more 

significant clinical signs of HE or complications leading to mortality.12,21 Investigation of 

the GI microbiome in dogs with hepatic pathology is more limited. A pilot study in 2015 

conducted with 10 dogs revealed that one dog with chronic active hepatitis had 

Fusobacteria as the dominant bacterial phylum in the distal gut, as opposed to healthy 

dogs or dogs with distinct systemic pathology not involving the liver, in which the 

dominant organisms were Firmicutes or Proteobacteria, though clinical significance of 

this finding could not be determined.23 Given the sparsity of literature, the role of 

dysbiosis in relation to hepatic dysfunction or pathology, including CPSS, in dogs has yet 

to be elucidated. 

 

All dogs in the present study had been medically managed prior to fecal sample 

collection with medications to reduce ammonia production and absorption in the gut and 

the manifestation of correlated clinical signs. All dogs were fed a therapeutic hepatic diet 

at the time of fecal collection. Moderately protein-restricted diets that provide high-

quality protein (bioavailable and with a balanced amino acid composition) are 

recommended for dogs with CPSS, as these diets have been shown to reduce the severity 

of HE scores in dogs with CPSS. 15,16,24 Though several studies on the effects of diet on 

intestinal microbiota in dogs have been published, none have been performed specifically 

with a reduced protein diet fed to dogs with hepatic pathology.24-27 These studies show 

that diet has the potential to cause statistically significant shifts in the fecal microbiota 

with variable size effect, corroborating the results of several human studies investigating 

the effects of diet on the microbiome.28-30 Given the other treatments administered in the 

dogs of this study, it is difficult to determine how significant the effects of the 

administered therapeutic hepatic diets were on the fecal microbiota of these dogs. 

 

Lactulose was also administered to all dogs in the present study prior to fecal collection. 

Lactulose has been shown to cause a significant, reversible alteration of the microbiome 

in healthy dogs, but its effects on the microbiome have not been studied in dogs with any 

disease state.15 Additionally, the effects of lactulose administered concurrently with 

antibiotics has not been studied in dogs. Contrary to the aforementioned study in dogs, 

one study in humans showed that lactulose did not have a significant impact on the 

microbiome in patients with cirrhosis.31 Because all dogs in the present study were being 

treated with lactulose at the time of fecal sample collection, we cannot draw conclusions 

about the specific effect of lactulose in this population, though it may have contributed to 

the relatively high prevalence of dysbiosis (63.0%) in light of the previous canine study. 

This is an area that would benefit from potential future study.  

 

No significant differences in the DI were noted between the 22 dogs (81.5%) receiving 

antibiotics and the five (18.5%) that were not. Previous studies performed in humans and 

dogs have shown both transient and long-lasting dysbiosis associated with antibiotic use, 

including the highly prevalent problem of Clostridium difficile in people.18,32-34 Despite 

the lack of association with the DI, the present study identified a significant association 

between metronidazole and a greater abundance of E. coli (p = 0.024), in agreement with 
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the results of a previous study investigating the use of metronidazole in healthy dogs.18 

No significant correlation between the use of other antibiotics was identified in this study, 

though sample sizes were limited. The relationship between amoxicillin/clavulanic acid 

and the DI has previously been investigated in dogs, and no significant affect was 

shown.35 

 

Clostridium hiranonis has garnered attention in its role in intestinal health, as well as the 

conversion of bile acids in the gut. This bacterial species has a strong negative correlation 

with an increase in the dysbiosis index in dogs.4 In our study, C. hiranonis was below the 

canine reference range in 19 (70.4%) dogs, with a median value of 0.99. Our study 

population also exhibited significantly elevated pre- (median: 112.9, range 10.5-318.8) 

and post-prandial (median: 205.6, range 69-382.3) serum bile acid concentrations, 

consistent with what is typical for dogs with CPSS. The shunting of blood bypassing the 

normal hepatic recycling of bile acids in these dogs with CPSS is likely the main driving 

force behind this elevation in bile acids, but the prevalence of low abundances of C. 

hiranonis may play a role as well.  

 

The abundance of C. hiranonis was also significantly positively correlated with 

preoperative serum albumin and cholesterol. While these findings may be incidental, they 

may also be associated with subclinical malabsorptive GI disease. It is the authors’ 

observation that many dogs with CPSS are suspected to have concurrent GI disease at the 

time of presentation, in addition to reference of this concurrent process in a group of dogs 

with intrahepatic CPSS.37 Several studies have elucidated the correlation between 

inflammatory enteropathies and dysbiosis in dogs, and the above findings may support 

this association.5-7,38 Further study is required to determine the individual role of fecal C. 

hiranonis in dogs with CPSS prior to medical management.  

 

We identified a significant negative correlation between the abundance of E. coli and 

both pre-operative lymphocyte and platelet counts. Several studies in human medicine 

have investigated a link between the GI microbiome, macronutrient environment, and 

various immune cells, including B lymphocytes present in the gut-associated lymphoid 

tissue (GALT).39,40 Platelets, in addition to their role in primary hemostasis, have also 

been shown to be capable of immune defense against E. coli, while conversely the 

lipopolysaccharide associated with E. coli has been shown to be lethal to platelets.41,42 

Though these relationships have only been studied in humans, the negative correlation 

identified in our study between E. coli abundance and platelet counts may be the result of 

these effects. Further study focused on E. coli abundance and platelet and lymphocyte 

counts would be required to confirm this correlation in dogs. 

 

In our study, no significant correlation was identified between the DI and the 

manifestation of clinical signs, either before or after medical management was initiated. 

This may be the case for several reasons; the clinical signs in dogs with CPSS may be 

more attributable to the shunting of blood bypassing the liver, increased production and 

absorption of ammonia, or alterations to the GI blood supply as opposed to intestinal 
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dysbiosis. Additionally, our characterization of the microbiome was limited to fecal 

samples. Fecal samples have been shown to be significantly different from small 

intestinal samples, and the bacterial populations exhibit significant differences even 

within individual dogs in transit from the stomach to the colon.36 It may be the case that 

changes in the small intestinal microbiome are more clinically significant than those in 

the colon or the feces for dogs with CPSS. Finally, there are many protective mechanisms 

in place to prevent dysbiosis from cultivating clinical signs. These mechanisms include 

the intimate association between the intestines and the immune system, as well as the 

normal intestinal mucus layer that is present in healthy dogs and likely dogs with CPSS 

(as opposed to dogs suffering from chronic inflammatory enteropathies).39,40 If these 

protective functions were intact in the dogs in our study population, this may have also 

contributed to the lack of significant association with the DI and the clinical signs listed. 

 

Interpretation of the microbiome in our study was performed with 16s rRNA qPCR, as 

determined by previous studies investigating the DI in dogs.4 This methodology is 

intended to look at the “functional core” of the microbiome in dogs, which is well 

preserved across differing individual dogs, dog breeds, and even between dogs and 

humans.3 Hence, changes in other bacterial taxa or species not included in this 

“functional core” may not have been identified in this population. Despite this potential 

limitation, we elected to utilize the qPCR as a way of avoiding overinterpretation of 

changes in the microbiome that may not be clinically relevant. 

 

Our study had several limitations. The sample size of 27 dogs is relatively small, 

increasing the likelihood for type II error for our statistical analyses, though it is the only 

study to-date to specifically evaluate the fecal microbiota in dogs with CPSS. Though 

fecal sample collection was performed prospectively, data collection on outcome was 

performed retrospectively, and interpretation of clinical signs was often based on owner 

observations or referring veterinarian medical records. Because medical management 

administration was performed at home, owner compliance was likely variable, and 

medical management strategies were diverse to start with as many referring veterinarians 

elected different protocols when initiating treatment for suspected CPSS. Unfortunately, 

there may be ethical implications to denying patients diagnosed with CPSS medical 

management to improve or mitigate clinical signs and side effects related to their 

diagnosis for study purposes.  

 

In summary, our study is the first to describe the GI microbiome in dogs with CPSS. We 

identified that dysbiosis is common in dogs being medically managed for CPSS, despite 

some variability in the protocol being used. We did not observe a relationship between 

fecal dysbiosis and clinical signs or outcome in dogs diagnosed with CPSS. Areas of 

future study should include characterization of the microbiome and DI in dogs prior to 

the initiation of medical management, and isolating individual components of the medical 

management protocol with control groups to determine their individual contribution to 

the changes described here. These studies will need to be performed in such a way to 

avoid negative effects to patients which may require certain medications to maximize the 
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likelihood of an uncomplicated clinical course following CPSS diagnosis. The DI and 

microbiome should also be described in dogs after having undergone surgical attenuation 

of their CPSS and following cessation of medical management. Though the DI did not 

appear to have any obvious effect on clinical outcomes in our study, controlled, 

prospective studies are warranted to further investigate this relationship as this may hold 

relevance for the treatment plan for dogs with CPSS.  
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CHAPTER TWO  

LITERATURE REVIEW  

  

What is the normal canine GI flora/microbiota? 

 

The microbiota of the mammalian gastrointestinal (GI) tract consists of trillions of 

bacterial organisms performing a variety of crucial roles both locally and systemically.1-3 

Characterization of the GI microbiome has evolved from culture-based models to high-

throughput DNA sequencing techniques, which have allowed for the characterization of 

the microbiome on the genetic and species level in various species, including canines.3-5  

 

The canine GI microbiota consists of a massive array of bacterial species in addition to 

archaea, fungi, protozoa, and viruses. In total, the estimated intestinal microbial load 

ranges between 1012 and 1014 organisms which equates to roughly 10 times the 

population of host cells.6 In comparing the canine microbiome to the human GI 

microbiome, a “functional core” has been established that appears to result in a similar 

functional capacity despite considerable inter- and intraspecies differences in the GI 

microbial population.3 This has important implications for physiologic function in the 

host, including polysaccharide degradation, synthesis of short-chain fatty acids, amino 

acids, and vitamins, immune regulation, nutrient metabolism, and other physiological 

processes.3,6-8  

 

In general, in the dog, the bacterial concentrations in the GI tract increase in an aborad 

direction beginning at the stomach. Typical bacterial counts in the stomach of the dog 

range from 101 to 106 cfu/g.9 Bacterial counts in the duodenum tend in general to be low 

(<103 cfu/g in duodenal aspirates), though considerable variation has been documented 

between dogs, whereas the ileum, in general, exhibits higher bacterial counts closer to 107 

cfu/g.6,10 In the small intestine of cats and dogs, the dominant bacterial groups to have 

been cultured are Bacteroides, Clostridium, Lactobacillus, Bifidobacterium, and 

Enterobacteriaceae, though more recent molecular characterization techniques have 

revealed a larger diversity of bacterial species than previously recognized.6,11 Bacterial 

counts in the colon of dogs have been documented between 109 and 1011 cfu/g, with 

Firmicutes, Bacteroides, and Fusobacteria the predominant phyla.11 Considerable 

investigation of the other components of the microbiome has also been performed, but is 

outside the scope of this project. 

 

How is the microbiome evaluated in an individual dog? 

 

Given the diversity and immense number of bacteria present in the canine microbiome, 

the techniques for determining the contributing organisms, and their relative abundance, 

have evolved over time. Each technique inherently comes with a unique set of benefits 

and drawbacks, which may impact their utility in research settings as opposed to clinical 

applications. In general, evaluation of the fecal microbiome (as compared to colonic, 
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small intestinal, gastric, etc.) is logistically the easiest and least invasive. Earlier 

techniques for fecal microbiome evaluation were culture-based, and initially aided in 

determining the most abundant taxa present in the microbiome of healthy dogs and cats: 

Bacteroides, Clostridium, Lactobacillus, Bifidobacterium spp., and 

Enterobacteriaciae.9,11,12 Bacterial cultures are performed both aerobically and 

anaerobically, though anaerobic species are inherently more fastidious to grow in culture. 

Distinct bacterial species were previously identified based on “colonial and cellular 

morphologies, gram reactions, spore formation and anaerobic growth,” though more 

recently genomic sequencing has made this process more streamlined. The bacterial 

count per gram of feces can be calculated based on growth in various culture media, 

though this may lead to underestimation of the true bacterial burden depending on the 

ease of growth in culture.9 Proposed benefits of culture-based methods include the ability 

to identify an active infection and the ability to perform concurrent antibiotic sensitivity 

testing in a clinical setting.13  

 

Culture-based microbiome analysis also has significant limitations. Because many of the 

bacterial species in the microbiome are anaerobic, growth in culture may be challenging 

or impossible, potentially leading to an underrepresentation of either bacterial diversity or 

estimations of abundance.11,13 Additionally, performing bacterial cultures can be 

laborious and time consuming, which may be a significant disadvantage when applied in 

a clinical setting. 

 

Subsequent studies sought to characterize the microbiome on a genomic level. Multiple 

studies in dogs have evaluated the bacteria of the microbiome based on sequencing of 16s 

ribosomal RNA (rRNA) genes utilizing polymerase chain reaction (PCR). Based on the 

genomic sequences that are generated (so-called “shotgun sequencing”), operational 

taxonomic units (OTUs) are determined, which aid in assigning these sequences to a 

specific bacterial taxon.13,14 In doing so, the aim is to evaluate the bacterial diversity of 

the microbiome in cats and dogs by identifying nearly all species that are present and 

eliminating the need for organisms to be amenable to culture. These assays are not 

necessarily targeted to individual bacterial taxa, but rather would often employ “universal 

bacterial primers” during the PCR process.15 Though these assays are able to identify 

many more bacterial species, there are still limitations to identification, particularly at the 

species and strain level, and thus the true bacterial diversity or abundance may still be 

underrepresented.16 

 

With knowledge of the specific 16s rRNA sequences in these bacterial species, targeted 

PCR primers can be used to identify and quantify bacterial species of particular interest, 

such as those that exhibit abundance differences in healthy as compared to diseased 

canine microbiomes. After identification of many of the bacterial species in the canine 

microbiome and using their respective primers as part of PCR, it was possible to evaluate 

differences in these populations between control dogs and those with various systemic 

pathologies, including conditions such as inflammatory enteropathies.4 By isolating the 

investigation of the microbiome to certain species, much of the “noise” is filtered out. 
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Given that the coinciding changes in bacterial populations for a specific disease process 

can be identified, this may lead to more clinical utility than culture-based methods or 

shotgun sequencing. For example, the concept of the dysbiosis index was developed after 

recognition that certain groups of bacteria were repeatably significantly different in dogs 

with chronic enteropathies as compared to healthy control dogs.4,16 This index has been 

standardized and differences can be directly evaluated between dogs.4,16 

 

Results of these analyses are currently likely of more use in a research setting to evaluate 

bacterial diversity in the microbiome, but their clinical application is limited given the 

lack of implicit functional significance associated with each bacterial species, and the fact 

that normal protective mechanisms (such as the mucosal mucus layer present in normal 

intestine) may prevent changes in the microbiome composition from leading to pathology 

or clinical signs.16 The study of “metabolomics” is an emerging field, and seeks to clarify 

the function of the microbiome, as well as its contributions to various disease processes. 

Importantly, even significant alterations in the microbiome may not manifest as clinically 

identifiable disease states because of the presence of these protective mechanisms present 

in healthy canine intestinal tracts. Thus, it is clear that evaluation of the microbiome and 

its potential ramifications in a clinical setting should involve a multifaceted approach that 

evaluates not only the microbiota, but also the relevant metabolic pathways, gene 

expression, and interactions with the host.16 This combined approach likely represents the 

bridge between laboratory research and clinical application of interpretation of 

microbiome shifts. 

 

What disease processes have been shown to change canine GI microbiota? 

 

Coinciding with a better understanding of the composition of the GI microbiome in 

healthy mammals, extensive research has been performed evaluating the GI microbiome 

characteristics in human and canine populations with various pathologies. Disease 

models evaluated in canines and humans include but are not limited to chronic 

inflammatory enteropathies, diabetes, obesity, and hepatopathies leading to hepatic 

encephalopathy (HE).15,17-21 By using the previously identified control profiles of 

intestinal microbiota in comparison to the profiles from the diseased populations, the 

concept of a “dysbiosis index” was established. This has been postulated to be a useful 

adjunct for identifying disease states, or as a potential monitoring target for treatment 

efficacy.4,5,15,17,18,21  

 

What findings have been reported regarding hepatopathies and microbiota? 

 

The role of the GI microbiome in chronic hepatopathies and hepatic encephalopathy (HE) 

has been investigated in humans.21,23,24 Ammonia has been considered as one of the 

primary causative agents of HE and is produced primarily from the process of urea 

breakdown by urease producing large intestinal bacteria, as well as in the kidneys and 

small intestine.21,23,24  Significant differences have been shown in the microbiota of the 

colon between human patients with cirrhosis and/or HE and healthy control individuals, 



 

15 

 

and some suggest that the alterations in the microbiome in these patients may contribute 

to more significant clinical signs of HE or complications leading to mortality.23,25,26 

Specifically, dysbiosis has been shown to have an important role in late-stage cirrhosis in 

humans including intestinal bacterial overgrowth, small bowel dysmotility, increased gut 

permeability, and decreased immunological defenses, all of which can predispose the 

affected individual to bacterial translocation from the gut to the systemic circulation.26 

This may also lead to septic bacterial peritonitis in human patients. The most commonly 

isolated bacteria in these cases is E. coli, which has also been shown to be one of the 

main bacteria increased in dysbiosis of dogs.4,26 Multifactorial immune suppression has 

been identified as an underlying cause for these bacterial infections, related to decreased 

activity of bactericidal phagocytic cells.27,28  

 

Intestinal dysbiosis has also been linked specifically with HE in humans, in which the 

prevalence of certain bacteria is increased, resulting in metabolic effects that contribute to 

HE.29 Reported bacteria associated with HE in humans with cirrhosis include E. coli, 

Staphylococcus spp., Streptococcaceae, and Veillonellaceae.30,31  

 

Investigation of the GI microbiome in canines with hepatic pathology is more limited. A 

pilot study in 2015 conducted with 10 dogs revealed that one dog with chronic active 

hepatitis exhibited Fusobacteria as the dominant bacterial phyla in the distal gut, as 

opposed to healthy dogs or dogs with distinct systemic pathology not involving the liver, 

in which the dominant organisms were Firmicutes or Proteobacteria, though clinical 

significance could not be determined.32 Given the sparsity of literature, the role of 

dysbiosis in relation to hepatic dysfunction or pathology in dogs has yet to be elucidated.  

 

What effects does lactulose have in the GI tract? Does it change the microbiota? 

 

In dogs, the most common cause of HE is related to congenital portosystemic shunts 

(CPSS) due to the high prevalence of this disease.33 Congenital portosystemic shunts are 

defined as one or more aberrant blood vessels that allow portal venous blood to bypass 

the liver parenchyma. This leads to neurologic clinical signs such as ataxia, lethargy, 

head pressing, or seizures.34 Typical medical management of dogs with PSS includes a 

restricted protein diet, lactulose administration, potential administration of antibiotics, 

anticonvulsant medications, or probiotics, all of which are intended to reduce ammonia 

production and absorption.35,36  Additionally, dogs with intrahepatic portosystemic shunts 

are at an increased risk for gastric or duodenal ulceration, and current recommendations 

for therapy include proton pump inhibitors both in the short and long terms.35 Provided 

these patients are deemed healthy enough to undergo general anesthesia, surgical 

attenuation of the CPSS is often recommended in order to restore more normal portal 

blood flow and liver function in the long term. Except for anticonvulsants, the effects that 

the individual components of medical management for CPSS have on the microbiome 

have been investigated individually in dogs.22,37-39   
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Lactulose is a synthetic disaccharide, an osmotic cathartic, and an ammonia reducer. 

Osmotic cathartics result in water being retained or attracted into the intestinal lumen, 

and may also cause enhanced mucosal secretion of fluid. Because no endogenous enzyme 

exists to digest lactulose, it passes through the small intestine undigested.40 In the colon, 

lactulose interacts with flora that break down saccharides, resulting in the production of 

lactic, acetic, and other organic acids that decrease luminal pH. In patients with HE, this 

effect is desirable as acidification of the fecal contents enhances the production of ionized 

ammonium, which is nonabsorbable, as opposed to ammonia.40  

 

The effect of lactulose on the GI microbiota has been studied in humans, mice, pigs, and 

in healthy dogs, with effects ranging from negligible to dramatic.41-44 In one study of 18 

healthy dogs, lactulose administration resulted in a decrease in bacterial diversity, 

characterized by significant increases in Firmicutes and Actinobacteria, and a decrease in 

Bacteroidetes and Fusobacteria.41 The authors posited that the increased presence of the 

family Veillonellaceae, members of which convert lactate to acetate and butyrate, may be 

beneficial as acetate has been negatively associated with proinflammatory cytokines in 

cirrhosis, and butyrate has been shown to be protective against HE in humans.45 These 

changes in the GI microbiota were found to be reversible with the cessation of lactulose 

administration in this population of dogs.41 The effects of lactulose on the fecal 

microbiota in dogs with hepatopathies and/or HE remains to be studied.  

 

What effects does diet have on canine GI microbiota? 

 

Dietary modification is another important component of medical management for dogs 

with CPSS and/or HE. In general, restricted protein diets are recommended for dogs with 

CPSS; the goal of a restricted protein diet is to reduce the production and absorption of 

ammonia in the large intestine; this is accomplished, at least in part, by limiting the 

substrate (i.e. protein) available to produce ammonia.36 Restricted protein diets with 

varying sources of protein have been shown to reduce the severity of HE scores in dogs 

with CPSS, and soy-based restricted protein diets may also lower the plasma ammonia 

concentration.46 

 

The nearly endless array of dietary effects on the GI microbiota that have been 

investigated in humans are beyond the scope of this project. In dogs, several studies have 

been published investigating the effects of diet on the intestinal microbiota, though none 

have been performed specifically with a protein restricted diet.47-49 As discussed, the role 

of the canine GI microbiota in hepatopathies, or more specifically CPSS/HE, has yet to 

be elucidated, though extrapolation from studies in humans is compelling for a 

meaningful relationship between the two.  

 

As different diets lead to altered presence of nutrients and degradation products in the 

intestinal tract, it stands to reason that there would be an impact on the GI microbiota 

which have been shown to be closely involved in nutrient processing and absorption. In 

healthy beagle dogs that were fed cellobiose, dose-dependent significant increases in 
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Lactobacillaceae, Alloprevotella, Bacteroides, and Prevotella were observed.47 The fecal 

pH in that study was unaffected by the dietary change, though the authors hypothesized 

that the increased fecal lactate concentration in the study may have acidified the colonic 

lumen (as opposed to the feces itself), which could be clinically relevant to dogs with 

CPSS/HE. Additionally, this theoretical change in colonic luminal pH may have been 

related to (or responsible for) the change in colonic microbiota.47 Fat content of the diet 

showed no significant impact on fecal bacterial richness or diversity in one study, though 

there were minor, statistically significant changes in individual bacterial taxa.48 Another 

study investigating the impact of a raw meat diet as compared to a commercial diet found 

that GI microbiota diversity was improved in the raw diet group, and that diet had a 

significant impact on the end products of fermentation (e.g. lactic acid, acetate, 

butyrate).49  Yet another study investigating a “bones and raw food” (BARF) diet showed 

no significant increase in microbiota diversity, but did show an increase in prevalence of 

E. coli and C. perfringens.50 It is apparent from these various studies that changes in the 

nutrient profile in the gut can have significant effects on the microbiome, and that the 

macronutrient composition of distinct diets can differ quite dramatically. 

 

There is currently no literature detailing the effects of a restricted protein diet on the 

canine GI microbiota, but these other dietary studies, as well as those documented in 

human medicine, make it seem possible or even likely that such a relationship exists.  

 

What effects do antibiotics have on canine GI microbiota?  

 

As agents that inhibit bacterial growth or survival, antibiotics inherently have effects on 

the GI microbiota that have been documented in numerous species, including humans and 

canines. In humans, the alteration to the GI microbiota associated with antibiotic use may 

be so significant as to predispose to pathologic colonization of the GI tract with 

Clostridium difficile, which has been documented following use of several classes of 

antibiotics including cephalosporins, clindamycin, and fluoroquinolones.51,52 The risk for 

dysbiosis appears to last for several weeks after antibiotic exposure. A review article 

published in 2017 details the multitude of effects of various antibiotics on the human GI 

microbiome.53 The use of broad-spectrum antimicrobials has been shown to decimate 

microbiome diversity, and in some cases may even precede long-lasting states of 

dysbiosis that may predispose individuals to the development or exacerbation of other 

disease processes. For more information on the individual profiles of effects of specific 

antimicrobials on the human microbiome or individual bacterial taxa, the reader is 

referred to this review article.53 

 

In human patients with HE, antibiotic therapy is often a key component of preventing or 

reducing the presence of clinical signs.54 The underlying rationale for antibiotic therapy 

in these patients is the reduction in production and absorption of gut-derived neurotoxins, 

as well as minimizing endotoxemia and inflammation. The most commonly used 

antibiotics in these patients are neomycin, metronidazole, vancomycin, and rifaximin, 

with rifaximin being most efficacious.54,55 An altered fecal microbiome in humans with 
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cirrhosis has also been linked directly to changes in cognition.56 Several studies have 

elucidated the role of rifaximin in altering the microbiome, and indicate that it may 

actually have eubiotic properties as opposed to other antibiotics that cause or exacerbate 

dysbiosis; the authors posit that this may be due to targeted effects on pathogenic bacteria 

or indirect effects on the host, such as inhibition of bacterial attachment or reduction of 

mucosal inflammation.57,58 Part of rifaximin’s eubiotic effects are its promotion of growth 

of beneficial bacteria such as Bifidobacteria and Lactobacilli, even in patients with 

gastrointestinal or liver disease.58 
 

Oral antibiotic therapy has classically been a component of medical management of dogs 

with CPSS and/or HE for the same reasons as listed above in humans, with metronidazole 

being among the most commonly used. Though the veterinary literature on changes in the 

GI microbiome is less robust, studies have examined antibiotic effects on GI flora in 

healthy dogs with multiple types of antibiotics. One such study on the effects of 

metronidazole found that there were significant decreases in fecal microbiome richness 

and in certain key bacteria such as Fusobacteria, and these changes were still in place 

four weeks after discontinuation of therapy.59 Other changes to the intestinal microbiota, 

such as those seen with antibiotic responsive diarrhea, are less well understood.14 The 

concept of metabolomics describes the translation of these alterations in bacterial 

populations into their functional capacity; until this can be investigated further in 

veterinary medicine, it will remain challenging to know the true relationship between the 

GI microbiome and various disease processes with which it has been linked. 
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