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Tuberculosis was declared a global emergency by theWorld Health Organization (WHO) in 1993. Following the

declaration and the promotion in 1995 of directly observed treatment short course (DOTS), a cost-effective

strategy to contain the tuberculosis epidemic, nearly 7 million lives have been saved compared with the pre-

DOTS era, high cure rates have been achieved in most countries worldwide, and the global incidence of

tuberculosis has been in a slow decline since the early 2000s. However, the emergence and spread of multidrug-

resistant (MDR) tuberculosis, extensively drug-resistant (XDR) tuberculosis, and more recently, totally drug-

resistant tuberculosis pose a threat to global tuberculosis control. Multidrug-resistant tuberculosis is a man-made

problem. Laboratory facilities for drug susceptibility testing are inadequate in most tuberculosis-endemic

countries, especially in Africa; thus diagnosis is missed, routine surveillance is not implemented, and the actual

numbers of global drug-resistant tuberculosis cases have yet to be estimated. This exposes an ominous situation

and reveals an urgent need for commitment by national programs to health system improvement because the

response to MDR tuberculosis requires strong health services in general. Multidrug-resistant tuberculosis and

XDR tuberculosis greatly complicate patient management within resource-poor national tuberculosis

programs, reducing treatment efficacy and increasing the cost of treatment to the extent that it could

bankrupt healthcare financing in tuberculosis-endemic areas. Why, despite nearly 20 years of WHO-promoted
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activity and .12 years of MDR tuberculosis–specific activity, has the country response to the drug-resistant tuberculosis

epidemic been so ineffectual? The current dilemmas, unanswered questions, operational issues, challenges, and priority needs

for global drug resistance screening and surveillance, improved treatment regimens, and management of outcomes and

prevention of DR tuberculosis are discussed.

The World Health Organization (WHO) is the directing and

coordinating authority on international health within the

United Nations system. Through WHO’s policies and support,

governments can tackle global health problems and improve

people’s well-being. It was almost 2 decades ago that WHO

declared tuberculosis to be a global emergency and launched

the cost-effective global tuberculosis control strategy named

directly observed treatment short course (DOTS) [1, 2]. In 1999,

with the growing threat of drug-resistant (DR) tuberculosis,

WHO decided to tackle it through a complementary approach

focused on provisions for treating multidrug-resistant (MDR)

tuberculosis [3]. In 2000, recognizing that the cost and poor

availability of high-quality drugs were barriers to successful

implementation of a programmatic management of MDR tu-

berculosis, WHO, together with some other agencies, set up the

Green Light Committee (GLC) to help countries gain access to

affordable, high-quality second-line drugs [4]. In 2002, ac-

knowledging that a critical lack of tuberculosis laboratory

services capacity was a barrier to effective tuberculosis care, the

DOTS Expansion Working Group of the Stop TB Partnership

established a subgroup on laboratory capacity strengthening

(now the Global Laboratory Initiative), hosted by WHO, to

address this. These leadership initiatives coincided with an

era of unprecedented funding for global tuberculosis control

activities through organizations such as The Global Fund.

The slow decline in tuberculosis incidence observed in the

past few years is encouraging, but there remains a great need

to enhance control efforts because the global burden of tuber-

culosis remains very high and control efforts have been dogged

by the emergence of DR strains of Mycobacterium tuberculosis.

WHO estimates that approximately 640 000 cases were due to

MDR tuberculosis in 2008 [5]. Multidrug-resistant tuberculosis

is a man-made problem, resulting from improper use of anti-

tuberculosis drugs and likely the substandard quality of tuber-

culosis drugs used in certain settings. The identification and

spread of MDR tuberculosis, extensively drug-resistant (XDR)

tuberculosis , and more recently, totally drug-resistant (TDR)

tuberculosis pose a major threat to global tuberculosis control.

Of the estimated 290 000 cases of MDR tuberculosis that could

be diagnosed if all notified tuberculosis cases were drug sus-

ceptibility tested, only 10% were reported to be enrolled in

treatment for MDR tuberculosis, and a much smaller percentage

received treatment from programs that use drugs approved by

the GLC [6]. In the 27 high-burden, MDR tuberculosis coun-

tries, only 1% of new tuberculosis cases and 3% of previously

treated cases are screened for DR tuberculosis by a laboratory.

The occurrence of MDR tuberculosis and XDR tuberculosis

greatly complicates patient management within resource-poor

national tuberculosis programs, reducing treatment efficacy

and increasing the cost of treatment to the extent that it

could bankrupt healthcare systems in tuberculosis-endemic

areas. Multidrug-resistant tuberculosis has great potential to

bankrupt patients because of the more complicated, lengthy

therapy involved [7–9] and the inability of these patient to

work.

A serious question arises: Why, despite nearly 20 years of

WHO-promoted activities in tuberculosis control and .12 years

of MDR tuberculosis–specific activity, has the global response

to the DR tuberculosis epidemic been so slow and ineffectual?

In this article, we discuss current dilemmas, unanswered ques-

tions, operational issues, challenges, and priority needs for

global drug resistance screening and surveillance, improved

treatment regimens and management of outcomes in human

immunodeficiency virus (HIV)–infected and uninfected adults

and children, and infection control and prevention of DR

tuberculosis.

DEFINITIONS, THEIR USEFULNESS, AND THEIR

LIMITATIONS

Current definitions of DR tuberculosis are as follows: MDR

tuberculosis is defined as resistance to the 2 key first-line anti-

tuberculosis drugs, isoniazid (INH) and rifampicin (RIF). The

term XDR tuberculosis appeared in the literature for the first

time in March 2006 in a report jointly published by WHO

and the Centers for Disease Control and Prevention (CDC);

later in the same year an outbreak of XDR tuberculosis as-

sociated with high mortality rates occurred among HIV-

infected patients treated at a rural hospital in Tugela Ferry,

South Africa [10]. It is presently defined as tuberculosis caused

by M. tuberculosis strains that are resistant to at least INH

and RIF (ie, MDR tuberculosis) plus any fluoroquinolone and

at least 1 of 3 injectable anti-tuberculosis drugsdcapreomycin,

kanamycin, or amikacin. Totally drug-resistant tuberculosis is

defined as tuberculosis caused by M. tuberculosis strains re-

sistant to all first- and second-line licensed anti-tuberculosis

drugs. Surveys of DR tuberculosis based on these definitions

can be useful markers of efficiency and quality of national,

regional, or global tuberculosis control programs and can

be used as powerful advocacy tools for evoking political and

community support. Furthermore, because treatment of DR

tuberculosis is more costly, data on drug resistance can inform
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health system budgetary planning. Identification of distinct

groups of patients with MDR tuberculosis and XDR tuber-

culosis are important in clinical trials assessing the efficacy

and duration of newer drugs or drug regimens. However,

the current broad-based definition of MDR tuberculosis and

XDR tuberculosis may not be sufficient to effectively ran-

domize patient groups in clinical trials and may require subclasses

of these groups based on actual drug resistance patterns to be

studied.

The complexities of phenotypic mycobacterial drug suscep-

tibility testing and the molecular mechanisms of M. tuberculosis

drug resistance and cross-resistance [11] can make these defi-

nitions imprecise and confusing because drug concentrations

used in definitions of drug resistance are not the same as drug

concentrations achieved at the site of infection in vivo. Fur-

thermore, the extent of resistance and cross-resistance conferred

by distinct mutations differs substantially for INH, RIF, ami-

noglycosides, and fluoroquinolones [12]. Although necessary

for treatment guidance, such complex diagnoses can only be

made in a few quality-controlled tuberculosis reference labo-

ratories, generally in developed countries where the burden of

disease is lowest.

GLOBAL EPIDEMIOLOGICAL DATA AND

ESTIMATES OF DRUG-RESISTANT

TUBERCULOSIS

Drug-resistant strains of M. tuberculosis are globally dispersed,

although the true scale of the threat remains undefined. Drug

resistance surveillance data were patchy and often unreliable

because of poorly standardized methodologies and biased

patient selection, with the highest uncertainty in tuberculosis-

endemic areas with limited resources where resistance testing

is often not available. In a literature review of data published

between 1985 and 1994, the authors found that rates varied

widely between settings [13]. In 1994, WHO and the Interna-

tional Union Against Tuberculosis and Lung Diseases established

a Global Surveillance Project to collect and assess data on the

extent and type of anti-tuberculosis drug resistance and to

monitor trends over time. Guidelines for surveillance of drug

resistance were published, and a network of reference centers

was established to aid standardization of procedures. The most

recent report published in 2010 revealed that no high-burden

country undertakes continuous surveillance, and although some

countries undertake periodic surveys, only 47 countries have

performed national surveys for drug resistance within the last

decade [6]. World Health Organization estimates state that

3.6% of global tuberculosis cases (440 000 cases) were due to

MDR tuberculosis in 2008, but these estimates are rather

crude (Figure 1). The lack of laboratory capacity to test for

drug resistance in much of Africa, Eastern Europe, and Asia

makes it nearly impossible to accurately assess the situation,

and the true global burden of DR tuberculosis may be higher

than current estimates (Tables 1 and 2).

The large number of MDR tuberculosis cases reported from

Eastern Europe and South Africa may only be the tip of the

iceberg, although countries with limited or no access to second-

line anti-tuberculosis drugs would not be expected to have

a significant ‘‘home-grown’’ XDR tuberculosis problem, although

immigration of patients from other countries is a potential

source. The practice of reporting the prevalence of drug re-

sistance as the proportion of cases with MDR tuberculosis is

a further source of confusion regarding the global burden of

drug resistance. Although a useful measure of the effectiveness

of treatment, it does not indicate the absolute burden of MDR

tuberculosis. For example, although the burden of MDR tu-

berculosis in South Africa appears low compared with that of

Eastern European countries (when expressed as a proportion

of the total tuberculosis caseload), the absolute number of cases

is in reality very high because South Africa has the third

highest tuberculosis caseload in the world [6, 14]. Similarly

the absolute numbers of cases in India and China are very

large, although as a proportion of total tuberculosis cases, the

burden seems relatively small.

Mechanisms of drug resistance in M. tuberculosis originate

either from spontaneous chromosomal mutations at low

frequency (primary drug resistance) or from misuse of anti-

tuberculosis drugs by physicians and patients, which leads

to monotherapy or intermittent drug intake (secondary drug

resistance) [11]. Secondary drug resistance is extremely rare

in patients who adhere to their prescribed anti-tuberculosis

regimen. Differentiation of drug-resistant cases is made for

programmatic reasons in which incident cases arising from

a transmission event are distinguished from those in which

resistance has emerged during the course of an infection

through inadequate therapy. WHO reports resistance in ‘‘pre-

viously treated cases’’ (defined as those who have received at

least 1 month of treatment with anti-tuberculosis drugs),

and resistance in ‘‘new cases’’ (defined as a newly registered

episode of DR tuberculosis in a patient who, in response to

direct questioning, denies having had any prior anti-tuberculosis

treatment for more than 1 month, and, in countries where

adequate documentation is available, patients for whom there

is no evidence of such history) [6]. Of 12 686 confirmed new

MDR tuberculosis cases reported worldwide in 2010, 11 646

were reported in the European region, the vast majority of

which were from Eastern Europe. A total of 22 875 confirmed

previously treated cases were reported to WHO in 2010, the

majority of which again were from Eastern Europe [15]. The

highest proportions of new and previously treated forms of

MDR tuberculosis are found in Eastern Europe and Central

Asia, with Azerbaijan, for example, reporting 22.3% and 55.8%

MDR tuberculosis in new and previously treated tuberculosis

cases, respectively [6]. The proportion of MDR tuberculosis
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is always higher in previously treated tuberculosis cases than

in new cases. India and China collectively accounted for almost

half of the global cases of MDR tuberculosis in 2010, reporting

high proportions of MDR tuberculosis in previously treated

cases (17.2% and 25.6%, respectively) but relatively small

proportions in new cases (2.3% and 5.7%, respectively) [15]. It

was assumed that the incidence of MDR tuberculosis in new

cases was an indicator of levels of transmission. However,

genotyping studies have revealed the possibility of secondary

infection, in which tuberculosis patients with drug-susceptible

tuberculosis are infected with a new MDR M. tuberculosis

strain, and thus an alternative measure of transmission is

required to avoid underestimation of the problem.

DIAGNOSIS OF DRUG-RESISTANT

TUBERCULOSIS

Sputum microscopy remains the most widely used diagnostic

test and is frequently the only test available in tuberculosis-

endemic areas. Although it allows detection of the most

infectious cases, it is not a sensitive test and case detection rates

remain low in developing countries [16]. In the WHO African

Region, less than half of the estimated incident tuberculosis

Table 1. Limitations of AvailableMultidrug-Resistant Tuberculosis
Data

Poor diagnostic, surveillance, and reporting systems for
drug-resistant tuberculosis in most developing countries due to
lack of resources and expertise.

Many tuberculosis-endemic areas are completely data deficient.

Continued surveillance occurs mainly in developed countries.

Periodic survey data are mostly old and outdated, although
a number of surveys are currently under way.

The proportion of drug-resistant cases among new tuberculosis
patients reflects transmitted disease, although retreatment
cases probably represent a mix of transmitted (primary) and
acquired (secondary) resistance.

Numbers of human immunodeficiency virus–infected patients with
drug-resistant tuberculosis are poorly quantified.

No reliable pediatric data on multidrug-resistant tuberculosis and
extensively drug-resistant tuberculosis exist.

Figure 1. A, Estimated absolute number of multidrug resistance (MDR) among tuberuculosis (TB) cases, 2009. B, Proportions of MDR among new
tuberculosis cases, 1994–2010.
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cases each year are detected and notified [15]. Microscopy

cannot differentiate drug-susceptible tuberculosis from DR

tuberculosis. Drug susceptibility can be determined phenotypi-

cally by culture of M. tuberculosis isolates in the presence of

the drug or genotypically via detection of mutations within the

genome of M. tuberculosis that are known to confer resistance

to specific anti-tuberculosis drugs. Culture-based methods are

generally costly and time consuming and require a well-

functioning, biosecure laboratory. Alternative lower-cost, more

rapid culture-based methods, such as the microscopically ob-

served drug susceptibility assay and the nitrate reductase assay,

have also been endorsed for use by WHO, and a further rapid

culture method, thin-layer agar culture, is also undergoing

evaluation [17]. However, biosafety issues remain a stumbling

block to more widespread implementation of these assays.

Moreover, the technical infrastructure and expertise required

means that in practice such assays remain largely confined

to centralized reference laboratories. Access to such facilities

is very poor in most high-burden countries, and not only do

we fail to detect many tuberculosis patients, but also only a tiny

proportion of those that are diagnosed are tested for drug

resistance.

Rapid diagnosis is of paramount importance to improve

patient outcomes and limit ongoing transmission. During the

outbreak of MDR tuberculosis and XDR tuberculosis in rural

KwaZulu Natal Province in South Africa in 2006, it was

striking that many patients died during the period that sputum

samples were obtained and the diagnosis was finally made [10].

Such delays in diagnosis allow clonal spread of drug resistant

M. tuberculosis strains within vulnerable communities. Nucleic

acid amplification tests (NAATs) provide a means for signifi-

cantly more rapid detection of drug-resistant mutations, but

it is important to note that other factors also contribute to

resistance phenotype [18]. For some anti-tuberculosis drugs,

genotypic drug susceptibility testing is complex, with multiple

areas of the genome involved. Testing for large numbers of

mutations is technically challenging and beyond the scope of

real-time polymerase chain reaction (PCR) or line probe

technology. Following the report of the South African XDR

tuberculosis outbreak in 2008, WHO endorsed the use of line

Table 2. Challenges for Global Control of the Drug-Resistant Tuberculosis Epidemic

Diagnostic dilemma Microscopy-based diagnostics are unable to identify drug-resistant disease.

Phenotypic diagnosis is most accurate, but requires a P3 lab and is costly and time consuming.

Genotypic diagnosis offers rapid turnaround and fair accuracy; huge chance of false-positive
diagnosis.

Xpert MTB/RIF assay and false positives.

Infection control difficulties Containment of aerosol transmission in healthcare facilities and transmission hot-spots within
the community is difficult.

Early diagnosis and effective treatment of infectious cases are essential, but even if this is
achieved, treatment response is often slow.

Prolonged isolation of infectious patients is costly and poses multiple legal and ethical dilemmas.

Complicated treatment Second-line treatment is very expensive and is less potent and more toxic than first-line options.

Treatment duration is for a minimum of 2 years with a combination of multiple drugs; adherence
is a major challenge.

Optimal drug regimens are poorly characterized, and no fixed-dose combination tablets are in
existence.

Drug-resistant tuberculosis and
HIV coinfection issues

The HIV epidemic has greatly increased the burden on tuberculosis programs, undermining
treatment outcomes and fueling high rates of recurrent disease.

Expansion of HIV care and treatment settings is very vulnerable to transmission and outbreaks
of drug-resistant tuberculosis, affecting patients and healthcare workers.

Second-line tuberculosis drugs and antiretroviral drugs have many shared toxicities, and
patients with drug-resistant tuberculosis may be more susceptible to tuberculosis-immune
reconstitution disease.

Limited international and domestic funding Controlling the drug-resistant tuberculosis epidemic requires major investment.

Most countries simply cannot afford or maintain the sophisticated infrastructure required to
manage these patients in an optimal fashion.

People with drug-resistant tuberculosis are usually poor and marginalized with little financial or
political influence.

Lack of political commitment Lack of awareness in general; no ‘‘disease face.’’

Inaccurate numbers and poor quantification of the true disease burden.

No immediate threat perceived; no easy/cheap answers.

No international political pressure.

Abbreviation: HIV, human immunodeficiency virus.
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probe assays in resource-limited settings for the rapid molec-

ular detection of drug resistance in smear-positive specimens

or culture isolates [19].

DEVELOPMENT OF NEWER ASSAYS FOR

DETECTING DRUG RESISTANCE

In 2009, the GenoType MTBDRsl (Hain Lifescience) assay,

which is able to detect resistance to fluoroquinolones, amino-

glycosides, and ethambutol in culture isolates or smear-positive

sputum specimens, became available [20]. A WHO expert com-

mittee reviewed the evaluation data for second-line drug

susceptibility testing using the GenoType MTBDRsl test in

2010 but did not endorse it due to lack of sufficient evidence

on its accuracy. When used in combination with the GenoType

MTBDRplus assay, the GenoType MTBDRsl assay provides

a means of rapid detection of XDR tuberculosis. Using such

molecular assays reduces the time to diagnosis of MDR tuber-

culosis and XDR tuberculosis from weeks or months to a matter

of days.

A further major step forward has occurred with the de-

velopment of the Xpert MTB/RIF assay, a simplified NAAT

that can be used outside the domain of reference laboratories

in peripheral healthcare facilities [21]. This assay uses a series

of molecular probes and real-time PCR technology to detect

M. tuberculosis and the rpoB gene RIF resistance–associated

mutations [22]. The cartridge-based system requires minimal

laboratory expertise, and results are available in ,2 hours,

permitting a specific tuberculosis diagnosis and rapid detection

of RIF resistance. A large multicountry evaluation found excel-

lent performance characteristics [23], and an implementation

study found that this technology could be used successfully

at the district level, greatly reducing the time to tuberculosis

diagnosis and showing high sensitivity for rapid detection of

RIF resistance [24]. Further studies, however, have highlighted

a problem with false-positive RIF resistance results [24, 25], and

corrective measures are being instituted, including revisions

to the diagnostic platform software and redesign of one of the

assay oligonucleotide probes [22]. Thus, following detection

of an RIF-resistant strain, WHO recommends further testing

with another method to confirm RIF resistance and to assess

susceptibility to other agents [21]. More details of this assay are

outlined in McNerney et al’s article (this issue) on tuberculosis

diagnostics and biomarkers.

PATTERNS OF DRUG RESISTANCE

Single-drug (mono) resistance occurs commonly to INH.

Historical studies demonstrated a high risk of acquiring INH

resistance when tuberculosis patients with high bacillary loads

were treated with INH monotherapy. The widespread use of

INH preventive therapy (IPT) may fuel the emergence of INH

monoresistance, which is usually the first step toward MDR

tuberculosis if active tuberculosis disease is not adequately ruled

out prior to IPT initiation. However, the available evidence

suggests that the risk posed by IPT programs is less than an-

ticipated, and the standard 4-drug treatment seems adequate

even for those who fail IPT [26]. Rifampicin monoresistance

used to be uncommon but seems to be increasing in frequency.

This may be a false observation that reflects the increased sen-

sitivity of genetic tests to detect RIF resistance compared with

INH resistance. However, upward trends have been observed

using phenotypic results as well in areas where poor quality of

fixed-dose combination tablets have been used in the past. Rates

of resistance may be affected by changes in treatment patterns,

as some countries have only recently initiated RIF in the con-

tinuation phase of treatment. It is important to point out that

the Xpert MTB/RIF assay only detects RIF resistance, which

is often used as a surrogate for MDR tuberculosis. The failure

to detect INH monoresistance is a significant limitation of the

Xpert MTB/RIF assay. This poses 2 problems: (1) RIF or INH

monoresistance would not be recognized, and (2) widespread

usage will result in lower diagnosis of INH monoresistance.

Furthermore, there have been particular challenges with the

stability of some rpoB gene probes leading to false-positive RIF

resistance results. This is a major concern because incorrect

multidrug resistance identification would deprive these pa-

tients of optimal first-line therapy, which is more potent and

less toxic and costs a fraction of the price of MDR tuberculosis

treatment. Suggestions that these patients should not be started

on an expanded first-line regimen until phenotypic confirmation

of the actual drug susceptibility pattern are tempered by labo-

ratory evidence that RIF induces efflux pump activation that

significantly reduces flouroquinolone drug levels during co-

treatment [27]. Resistance to other first-line drugs, pyrazinamide

and ethambutol, are rarely tested for but seems to occur fre-

quently among MDR tuberculosis cases. This is not unexpected

in settings where first-line treatment often continues for months

until treatment failure is recognized, and even the use of re-

treatment regimens that include streptomycin as a fifth agent

offers poor protection against amplification of drug resistance.

MANAGEMENT OF DRUG-RESISTANT

TUBERCULOSIS

It is estimated that ,7% of MDR tuberculosis cases are diag-

nosed worldwide [6], and of these only 1% of patients receive

treatment from programs that use quality-assured anti-

tuberculosis drugs approved by the GLC. The GLC was set

up to monitor tuberculosis program performance and re-

strict the availability of second-line anti-tuberculosis drugs,

making them available only to countries that meet minimum

performance targets. Whereas WHO and the GLC focus their

attention on the public sector and national control programs,
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the private sector is not regulated in most countries. Individuals

with suspected MDR tuberculosis who cannot access second-

line treatment in the public sector may turn to private pro-

viders, who may supply drugs, but of variable quality and

without appropriate medical supervision, and thus the risks

of amplified resistance or the emergence of XDR tuberculosis

are high. Best practice guidelines need to be refined, taking

into account drug cost, the cost of missed diagnosis or initial

suboptimal treatment, side effects, and interactions with anti-

retrovirals. Although individualized regimens based on labo-

ratory drug susceptibility data remains the ideal, standardized

management algorithms based on local drug susceptibility

patterns seem the only pragmatic alternative to assist treat-

ment delivery at peripheral points of care. This should be

done as an integrated tuberculosis and HIV service, with strict

infection control measures.

COMPLEXITIES, DILEMMAS, AND PRIORITY

NEEDS FOR DRUG-RESISTANT TUBERCULOSIS

TREATMENT

Given that ,1% of MDR tuberculosis patients are estimated to

be on appropriate treatment [5, 28], massive treatment scale-up

is urgently required to reduce individual suffering and to avoid

ongoing transmission and a future scenario when DR tuber-

culosis strains cause the majority of tuberculosis cases [29].

Reasons for the lack of treatment scale-up include lack of

diagnostic capacity in countries with the highest burdens of

tuberculosis and DR tuberculosis, lack of political commitment,

and lack of the financial resources needed to reach universal

access for MDR tuberculosis treatment [30]. In addition, there

are complexities around supply and pricing of existing second-

line tuberculosis drugs, with ineffective global mechanisms

to ensure access to quality-assured and effective regimens to

treat MDR tuberculosis.

Early experience in the treatment of DR tuberculosis was

primarily gleaned from small, well-resourced programs, and

treatment was invariably individualized. Settings utilizing stan-

dardized or empiric treatment on a programmatic scale often

report poorer outcomes, resulting in treatment success in ap-

proximately 62% of cases [31, 32]. More recent evaluations

have reported higher success, up to 88% [33], but fundamental

biases, such as nonrandom differences in how treatment is

offered, influence the reported efficacy of regimens and also

potentially lead to erroneous conclusions. In general, outcomes

are suggested to be worse among HIV-infected individuals

[34, 35]. Disappointing treatment outcomes are largely explained

by the fact that treatment is lengthy and toxic, rendering ad-

herence extremely difficult for patients. Even with good patient

adherence, resistance amplification is common, resulting in

treatment failure and the creation of highly resistant tuberculosis

strains [36, 37].

Current recommendations for the treatment of DR tubercu-

losis are based on low-grade evidence. Randomized controlled

trials have not been conducted to the same degree that ulti-

mately led to the definition of the first-line tuberculosis regimen

currently used [38]. Instead, guidelines for the management

of MDR tuberculosis are based largely on expert opinion and

limited observational data, resulting in the recommended use

of drugs for which there is no or limited evidence of efficacy

[39, 40]. Implementation of these guidelines results in a wide

range of treatment regimens based on availability of drug

susceptibility testing, physician preference, and drug avail-

ability and cost in many settings. Such individualized treat-

ment approaches result in a modest improvement in outcomes

(64% treatment success vs 54% for standardized treatment in

meta-analyses) but no clear benefit in terms of mortality re-

duction (11% for both approaches) [32]. Clearly there is an

urgent need for defined DR tuberculosis regimens that are

shorter, more tolerable, and more effective and that have

undergone trials under programmatic conditions [33, 41].

Given this bleak picture, it is encouraging that there are

now several new promising compounds in the pipeline (see

Leinhardt et al in this issue). The most advanced of these are

TMC207 and OPC-67683, developed by Tibotec and Otsuka,

respectively [42–44]. Early data on TMC207 suggested a signifi-

cant negative interaction with RIF, a backbone first-line

drug, and hence efforts have been directed from the outset

toward DR tuberculosis treatment [45]. After promising phase

2 data, Tibotec has now approved the use of TMC207 under

compassionate-use criteria for patients with limited treatment

options. Due to poor treatment outcomes and high levels of

treatment failure and defaulting, there is considerable pressure

to make these drugs available sooner rather than later. Com-

passionate use can be seen as one way to speed up access to new

drugs for patients whose therapeutic options are few and who

therefore cannot afford to wait for the results of clinical trials.

However, care must be taken to ensure that compassionate use

does not result in inappropriate use and the early emergence of

resistance.

METHODOLOGICAL ISSUES IN

DRUG-RESISTANT TUBERCULOSIS

TREATMENT

In addition to debates on priorities for new and existing

tuberculosis drugs [46], there are important methodological

difficulties in conducting clinical trials for DR tuberculosis

(Table 3). The novel notion of the optimized background

regimen enables assessment of individual drug effects, but

it remains difficult to assess particular drug combinations in

clinical trials [39]. If a similar approach to clinical trials for

combinations of new and existing drugs with different dura-

tions is taken for DR tuberculosis, as was done for first-line
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treatment, there could be a delay of 20–30 years before a well-

evaluated regimen emerges [39]. Hence there is a need for

novel, innovative strategies to generate data that will inform

DR tuberculosis regimen development. Carefully guided pri-

oritization is required in order to test regimens most likely to

be efficacious, and importantly, able to be implemented under

routine conditions in decentralized, nonspecialized programs

in high-burden settings.

There have been some promising moves in this regard. The

TB Alliance, through the Critical Path to New TB Regimens,

has embarked on a series of early bactericidal activity (EBA)

trials testing novel combinations of drugs, which aim to con-

siderably reduce the time taken to develop full regimens [47].

There is debate in the tuberculosis clinical trial community

about the appropriateness of EBA for evaluation of new drug

combinations (see Phillips et al article in this issue). Further-

more, because the aim is to develop an entirely new regimen

for all tuberculosis (both drug susceptible and resistant) [48],

such a strategy will likely delay access to new drugs for DR

tuberculosis patients and will not take advantage of the potential

to combine new tuberculosis drugs with existing drugs cur-

rently used for DR tuberculosis. An entirely new tuberculosis

regimen will likely take many years to establish, and in the

meantime, DR tuberculosis will continue to exact an enormous

toll on mortality and further threaten tuberculosis control

efforts. Hence, there are strong arguments to concurrently

develop better regimens for DR tuberculosis. Another promising

approach is the use of individual patient-level meta-analyses

to better utilize existing observational data on DR tubercu-

losis treatment and outcomes. An analysis drawing data from

published meta-analyses aiming to assess drug choices and

duration of treatment is currently under way with full results

available soon [49]. This approach permits more extensive

analysis of treatment factors than conventional meta-analyses

but remains limited by the observational nature of the pri-

mary data and heterogeneity of treatment approaches.

SCALING UP DRUG-RESISTANT

TUBERCULOSIS TREATMENTdCONCERNS

AND DILEMMAS

Ultimately, if treatment is to be scaled up to the level required

to meet the hundreds of thousands of patients in need each year

and the millions currently waiting for treatment, some form

of standardization will inescapably be required in order to im-

prove access, reduce reliance on specialized services, and sim-

plify patient adherence. However, in the absence of a full drug

susceptibility profile, empiric regimens that take into account

prevailing resistance patterns and HIV prevalence in different

settings will be needed. With the expansion of case detection

promised by the introduction of rapid PCR-based diagnostics,

more programmatic data should be generated over the coming

years. The question arises as to how these data should be best

used to inform the design of clinical trials and advise national

programs on what drug regimens should be implemented.

One approach might be to draw on lessons learned from

other diseases with regard to combined databases and in-

formation sharing. In hematology, for example, a shared

database has been developed to draw data from multiple

sites. This approach has the advantage of standardizing data

collection, thus increasing the ability to undertake robust

statistical analyses. This has improved survival for pediatric

leukemia and increased the potential patient base for enrollment

in clinical trials [50].

Other approaches are needed to inform the conduct

of clinical trials that are most likely to result in usable,

Table 3. Methodological Difficulties and Possible Solutions to Identify Optimal Treatment Regimens for Drug-Resistant Tuberculosis

Methodological Difficulties Possible Solutions

Heterogeneous patient population; variable
drug resistance profiles

Testing novel drugs against an optimized background regimen (difficult to
assess particular drug combinations) tuberculosis

Little basic information regarding pharmacokinetics
and other drug characteristics

Use of individual patient-level meta-analyses to better utilize existing
observational data;expanded early bactericidal activity studies in patients
with drug-resistant tuberculosis

Risk of selection bias, especially with program-based
outcomes

Detailed pharmacokinetic and drug interaction studies for all
second-line drugs

Hundreds of possible combinations of existing and
new drugs and durations that could be tested
against specific resistance profiles

Validate surrogate marker of response to therapy (eg, 6-month culture
conversion rate)

Limited capacity to conduct large-scale trials in high
multidrug resistance–burden settings

Develop capacity within tuberculosis control programs to conduct
effectiveness trials of high quality

Length of time taken to achieve treatment success
and therefore assess efficacy

Using animal models to test multiple drug combinations for potential
synergy or antagonism, against infection with a variety of resistance
profiles

Need for novel, innovative strategies to generate data that
will inform drug-resistant tuberculosis regimen
development; carefully guided prioritization of human trials

Support novel drug development and testing against drug-resistant
strains
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efficacious regimens. This includes expanding efforts to develop

new models (mathematical, animal, and human) to direct

which drugs and which drug combinations should be taken

forward to trials and efforts to characterize markers of disease

progression and cure. In addition, various drug combinations

may have the potential to result in positive synergistic inter-

actions that may shorten treatment and increase efficacy. An

example of this is the potential synergistic effects of ethambutol

and pyrazinamide on clarithromycin [51, 52]. Unfortunately,

data on potential drug synergies is severely limited for existing

second-line tuberculosis drugs, mainly because many of these

drugs are not well characterized in terms of mechanisms of

action and pharmacokinetics [53]. Indeed, many currently used

second-line tuberculosis drugs are not even registered for long-

term use in tuberculosis treatment; the fluoroquinolones are

a notable example of this. There is also potential for novel

approaches to therapy, such as adjunctive therapy to limit tissue

damage, [54] and novel drug delivery mechanisms, such as in-

haled drugs [55]. Hence, in addition to novel methods of accu-

mulating observational data on outcomes, significantly more

targeted laboratory and pharmacokinetic studies are needed.

Encouragingly, there are several controlled trials under way

aiming to improve DR tuberculosis treatment (see details at

http://clinicaltrials.gov). Planning is also well advanced for

a clinical trial aiming to evaluate the successful 9-month regi-

men used in Bangladesh in other high MDR–burden settings

(STREAM study) [33, 56]. There are compelling reasons, both

humanitarian and epidemiological, to scale up access to the

best possible treatment for patients currently suffering from

DR tuberculosis. Questions remain as to whether the limited

global capacity for clinical trials in DR tuberculosis is being

optimally used. A more directed and informed strategy that

draws on the large range of mathematical and statistical tools

that are available to help support complex decision making

should be used to guide such decisions.

NEED FOR ANCILLARY OR ADJUNCT

TREATMENTS

The poor treatment outcomes for XDR tuberculosis and MDR

tuberculosis and the slow progress in development and evalua-

tion of new tuberculosis drugs now calls for evaluation of novel

adjunct therapies in addition to tuberculosis drug treatment.

A range of immune modulators have been considered for use

as adjunct treatment of DR tuberculosis [57]. These include

immunoregulatory approaches, immunosuppressive therapy, and

supplement effector cytokines. Immunoregulatory approaches,

which seek to alter the nature of the immune response, can be

divided into 3 subgroups: (1) those for which good manufacturing

practices (GMP) manufacturing capacity exists (high-dose IVIg;

HE2000-16a-bromoepiandrosterone; multidose heat-killed

Mycobacterium vaccae or Mycobacterium w; anti–interleukin 4);

(2) those for which GMP manufacturing capacity can be es-

tablished (DNA vaccine [HSP65]), and (3) the others (Dzherelo;

SCV-07 SciCLone; RUTI) [57]. Clinical trials with environ-

mental Mycobacterium species have not shown any benefit as

adjunct treatments. Trials with other preparations are hindered

by availability of funding and the high cost of the immuno-

therapeutic agent. A phase 1 study in patients in Belarus with

MDR tuberculosis and XDR tuberculosis is under way using

autologous bone marrow–derived mesenchymal stem cell trans-

fusions (M. Maeurer, personal oral communication, 2 December

2011) in an attempt to reinvigorate lung immune responses to

enhance mycobacterial clearance.

PREVENTION AND CONTROL MEASURES FOR

DRUG-RESISTANT TUBERCULOSISdIDEAL VS

REALITY

The existing BCG vaccine has played only a small role in pre-

venting the acquisition and spread of DR tuberculosis. New

effective vaccines against tuberculosis have the potential for

a significant and durable effect on reducing DR tuberculosis

globally. During the past decade, tuberculosis vaccine research

has developed a number of new vaccine candidates that are

under evaluation. Although the world eagerly awaits the results

of these trials, current emphasis must remain on basic pre-

vention and infection control measures. Pediatric data indicate

effective human-to-human transmission within households,

invalidating previous laboratory observations that drug-resistant

strains are likely to be less fit and thus pose a reduced trans-

mission risk [58]. The fitness cost associated with the acquisition

of drug resistance seems unpredictable as compensatory evolu-

tion has been demonstrated to account for improved fitness

of DR clinical strains with fitness approaching that of their

progenitor strains [59]. The spread of DR tuberculosis is omi-

nously linked to the HIV epidemic, as reflected by the clonal

nature of the XDR tuberculosis outbreak documented at Tugela

Ferry in KwaZulu Natal, South Africa [10], which showed that

person-to-person spread of DR tuberculosis can occur quickly

in hospitalized patients with HIV infection. Furthermore, all

grades of healthcare workers are at increased risk of acquiring

DR tuberculosis from patients because many hospitals in

resource-poor countries do not have appropriate facilities for

instituting infection control measures. There have been several

reports of XDR tuberculosis occurring in South African hos-

pital staff. This emphasizes the crucial importance of in-

stituting effective infection control measures within hospitals,

clinics, and confined institutions such as prisons, mines, and

other congregate settings.

Patients with DR tuberculosis should be managed as in-

patients in hospitals equipped with negative pressure isolation

facilities, appropriate masks for patients and staff, and admin-

istrative protocols to deal with such patients; appropriate
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environmental protective measures should also be taken. This

may not be feasible in most resource-poor settings. In warm

climates, adequate ventilation (.12 air changes per hour) ob-

tained by opening windows and doors is the most important

and easily implemented measure other than diagnosing and

treating infectious cases early and effectively and separating

suspected cases from high-risk patients, such as children and

HIV-infected individuals. Cough etiquette is also a cost-effective

intervention that needs to be urgently implemented at all levels.

A recent modeling study on infection control outcomes esti-

mated that half of anticipated XDR tuberculosis cases could be

prevented by applying a combination of available strategies in

developing countries [60]. Appropriate safety measures should

be implemented by clinical and laboratory staff when dealing

with biological samples from patients suspected of harboring

DR tuberculosis strains.

INFECTION CONTROL MEASURES AND

PATIENT RIGHTS

Balancing the rights of individual patients to have freedom of

movement and association vs protecting the rights of the

community at large to be protected from a dangerous path-

ogen is a difficult issue. During the severe acute respiratory

syndrome outbreak, immediate implementation of strict pa-

tient isolation measures helped to avert a global epidemic. The

situation with DR tuberculosis is more problematic because

millions of people are affected already, disease is often in-

dolent with slow progression over time, a prolonged course

of treatment is required (at least 2 years), and cure cannot

be guaranteed. Ensuring effective patient isolation during

the time of infectiousness (sputum smear positivity) sounds

like a logical intervention, but the scale of such an initiative

is overwhelming. The threat of long-term isolation from loved

ones and the huge economic consequences of having to visit and

support the patients would be a major disincentive to present

for diagnosis and treatment. Such a reaction may do more

harm than good, negatively impacting control of both drug-

susceptible and DR tuberculosis. The impact of various public

health interventions to limit ongoing transmission within

communities merits further discussion.

It is estimated that healthcare workers in South Africa have

a 6-fold higher risk for contracting MDR tuberculosis and

XDR tuberculosis compared with the general population [61].

WHO has published a policy on infection control that attempts

to address the needs of resource rich and resource-limited set-

tings [62]. This covers organizational activities (surveillance

and assessment at all levels of the health system), adminis-

trative controls (triage, cough etiquette, reduction of un-

necessary hospital stays, etc), environmental controls (natural

ventilation, mechanical ventilation, ultraviolet irradiation, and

health facility renovation), and personal protection (the use of

respirators for health staff and masks for patients and the

‘‘package of prevention and care for healthcare workers’’ [in-

cluding HIV prevention, antiretroviral therapy, and IPT for HIV-

positive healthcare workers]). The WHO policy on infection

control does not adequately distinguish between interventions

that can be readily applied in resource rich and resource poor

settings and not surprisingly in resource poor settings remains

poorly implemented. Increased collaboration between HIV and

tuberculosis screening and treatment programs will be essential as

a means of infection control in endemic settings in order to

mitigate the risk of transmission of tuberculosis, including in

clinical spaces where HIV-infected individuals are kept in close

contact with one another. Infection control management in

clinical settings can include measures such as integrated tuber-

culosis and HIV care, early diagnosis and linkage to treatment,

and appropriate ventilation and cough control, including triaging

patients with cough to a separate waiting area. In addition to

public health measures, early initiation of both antiretroviral

therapy and second-line anti-tuberculosis drugs is a critical factor

in survival of HIV-infected patients who are coinfected with

MDR tuberculosis or XDR tuberculosis.

DRUG-RESISTANT

TUBERCULOSISdPEDIATRIC ISSUES

Published data on DR tuberculosis in children is sparse, but in

general the pattern of drug resistance in children mirrors that

of emergence within the adult population [63]. A rising in-

cidence of DR tuberculosis has been reported in a longitudinal

surveillance study from South Africa, in which MDR tuber-

culosis among children newly diagnosed with tuberculosis in-

creased from 2.3% in the period 1994–1998 to 6.7% in the

period 2005–2007; increases in drug resistance among adult

cases in the same community were also tracked [58]. Successful

transmission of MDR M. tuberculosis strains demonstrates the

need to protect young and vulnerable children by limiting

their exposure to infectious cases and considering preventive

chemotherapy in the subgroup at highest risk of disease pro-

gression [64, 65]. The diagnosis of pediatric MDR tuberculosis

is often delayed due to reliance on the diagnosis of the adult

contact as a case of MDR tuberculosis, which depends on sputum

culture and drug susceptibility results. Diagnosis requires a high

index of suspicion because the culture yield in children makes

definitive microbiological confirmation difficult. Resistance

should be suspected if an index case has known resistant

tuberculosis, if the child shows initial improvement on anti-

tuberculosis treatment and then deteriorates, or if there is no

response to initial treatment. Acquired drug resistance in the

pediatric population is rarely reported; however, children with

M. tuberculosis–HIV coinfection could have high bacterial loads

as well as low drug levels, hence, they should be closely moni-

tored and adherence to treatment should be ensured. Table 4
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summarizes some of the principles related to prevention, di-

agnosis, and management of DR tuberculosis in children.

Definitive data regarding optimal therapy for pediatric DR

cases are lacking, but treatment cure rates .90% have been re-

ported for MDR cases [66], and children with XDR tuberculosis

have been successfully treated as well [67]. This demonstrates

that a rational approach to diagnosis and drug selection can lead

to good outcomes if adherence is maintained and side effects are

adequately managed [64, 66]. Most guidelines, although expert

opinion based, recommend regimens that include at least 4–5

active drugs, of which 1 should be an injectable agent and, if

possible, at least 2 should be bactericidal. In the absence of drug

susceptibility results, the child should be treated according to the

resistance profile of the most likely source case [64, 65]. The use

of high-dose INH (15 mg/kg) is likely to confer clinical benefit

with low or intermediate levels of INH resistance, which may be

suggested by genetic mutational analysis [68, 69]. However, INH

should not replace an active drug in the regimen, and combining

high-dose INH with ethionamide is probably a good strategy to

consider in the absence of sophisticated tests [68, 70].

Depending on the severity of disease and side effects experi-

enced, parenteral agents should be given for at least 4–6 months.

Although second-line anti-tuberculosis drugs have known

and potentially serious side effects, limited evidence in chil-

dren suggests that they tolerate these drugs at least as well as

adults [65]. There is general consensus that the benefits

of fluoroquinolones in the treatment of DR tuberculosis far

outweigh potential risks [64, 65]. Ciprofloxacin has the weakest

potency and should not be used if newer fluoroquinolones are

available. Amikacin is generally the injectable agent of choice

in children because it is less painful to inject intramuscularly

and is associated with fewer adverse effects than other agents.

However, prolonged use of any injectable agent is associated

with renal and hearing/vestibular toxicities, which may be de-

layed in onset. Hearing should be monitored during and for

at least 6 months after treatment completion because hearing

disability may have major consequences for language and

communication development [71]. Both ethionamide and

para-aminosalicylic acid (PAS) have been associated with

transient hypothyroidism, and thyroid replacement therapy

may be warranted during prolonged treatment, especially in

young children with active neurological development. Serine

analogues such as cycloserine/terizidone as well as INH and

some antiretroviral drugs can cause peripheral neuropathy;

routine pyridoxine supplementation is advised, especially in

HIV-infected children who frequently demonstrate persistently

low pyridoxine levels [72].

CONCLUSIONS

Multidrug-resistant tuberculosis and XDR tuberculosis are

spreading globally and now greatly complicate patient

Table 4. Issues Related to Drug-Resistant Tuberculosis in Children

Preventive therapy The best protection for vulnerable children is reduced exposure, which emphasizes the need for early
diagnosis of adult cases and implementation of effective infection control measures.

Children aged ,3 years are most vulnerable to progress to disease following exposure/infection.

High-dose INH preventive therapy (10–15 mg/kg) may offer some protection with low- or intermediate-level
INH resistance.

For INH or RIF monoresistance, either RIF (4 months) or INH (6–9 months) should provide adequate
protection.

As a general rule, the benefit-to-risk ratio for multidrug-resistant prophylaxis is likely to be highest in children
aged ,3 years. Using 2–3 oral drugs (6 months) to which the index strain is susceptible does provide
some protection.

Follow up of high-risk children is warranted for a period of at least 1 year.

Diagnosis Always take a detailed contact history.

Always collect at least 2–3 samples for culture and susceptibility testing before initiating treatment
following exposure to a drug-resistant source case.

Improved access to culture and molecular diagnostics should benefit children in whom microscopy
performs poorly.

Management Same principles apply as in adults, but children with minimal disease and low bacillary loads may be treated
for shorter durations (9–12 months of prescription drugs).

Always base treatment decisions on the drug susceptibility profile of the likely source case, and adjust as
needed should any of the child’s specimens yield a positive result.

Pay attention to dosage because pediatric formulations of second-line drugs are often not available.

Increased vigilance is required to monitor for adverse events (eg, transient hypothyroidism associated with
ethionamide or PAS treatment has increased relevance in an actively growing and developing child).

Ensure parental understanding of the need to complete a prolonged course of treatment and provide
ongoing support.

Abbreviations: INH, isoniazid; PAS, para-aminosalicylic acid; RIF, rifampicin.
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management within resource-poor national tuberculosis pro-

grams, reducing treatment efficacy and increasing the cost of

treatment to the extent that it could bankrupt healthcare systems

in tuberculosis-endemic areas. There is an urgent need for

program and laboratory infrastructure improvement and a dire

need for funders, donors, and governments to take these issues

seriously, especially in light of the current global economic re-

cession.

Notes

Author contributions. A. Z. initiated and developed the first draft and

final paper. All authors contributed to the writing and development of the

manuscript.

Finanacial support. This work was supported by the European Com-

mission (EuropeAid), Belgium; European and Developing Countries Clinical

Trials Partnership (EDCTP), Netherlands; and Union Bank of Switzerland

(UBS) Optimus Foundation, Switzerland. A. Z is supported by the University

College London Hospitals (UCLH) National Institute for Health Research

(NIHR) Comprehensive Biomedical Research Centre (CBRC) and the UCLH

National Health Service (NHS) Foundation Trust.

Potential conflicts of interests. All authors: No reported conflicts.

All authors have submitted the ICMJE Form for Disclosure of Potential

Conflicts of Interest. Conflicts that the editors consider relevant to the

content of the manuscript have been disclosed.

References

1. WHO. Tuberculosis: a global emergency. Geneva, Switzerland: World

Health Organization, 1994.

2. WHO. Global tuberculosis programme: framework for effective

tuberculosis control. Geneva, Switzerland: World Health Organization,

1994.

3. WHO. DOTS-Plus and the Green Light Committee. Geneva, Switzerland:

World Health Organization, 2000.

4. WHO. Annual report 2008: Green Light Committee initiative of the

working group on MDR-TB of the Stop TB Partnership. Geneva,

Switzerland: World Health Organization, 2009.

5. WHO. Towards universal access to diagnosis and treatment of

multidrug-resistant and extensively drug-resistant tuberculosis by

2015: WHO progress report 2011. Geneva, Switzerland: World Health

Organization, 2011.

6. WHO. Multidrug and extensively drug-resistant tuberculosis (M/XDR-

TB): 2010 global report on surveillance and response. Geneva, Switzerland:

World Health Organization, 2010.

7. Kemp JR, Mann G, Simwaka BN, Salaniponi FM, Squire SB. Can

Malawi’s poor afford free tuberculosis services? Patient and household

costs associated with a tuberculosis diagnosis in Lilongwe. Bull World

Health Organ 2007; 85:580–5.

8. Liu X, Thomson R, Gong Y, et al. How affordable are tuberculosis

diagnosis and treatment in rural China? An analysis from community

and tuberculosis patient perspectives. Trop Med Int Health 2007; 12:

1464–71.

9. Long Q, Li Y, Wang Y, et al. Barriers to accessing TB diagnosis

for rural-to-urban migrants with chronic cough in Chongqing, China:

a mixed methods study. BMC Health Serv Res 2008; 8:202.

10. Gandhi NR, Moll A, Sturm AW, et al. Extensively drug-resistant

tuberculosis as a cause of death in patients co-infected with tuber-

culosis and HIV in a rural area of South Africa. Lancet 2006;

368:1575–80.

11. Zhang Y, Yew WW. Mechanisms of drug resistance in Mycobacterium

tuberculosis. Int J Tuberc Lung Dis 2009; 13:1320–30.

12. van Ingen J, de Lange WC, Boeree MJ, et al. XDR tuberculosis. Lancet

Infect Dis 2011; 11:585.

13. Cohn DL, Bustreo F, Raviglione MC. Drug-resistant tuberculosis:

review of the worldwide situation and the WHO/IUATLD Global

Surveillance Project. International Union Against Tuberculosis and

Lung Disease. Clin Infect Dis 1997; 1(suppl 24):S121–30.

14. Zager EM, McNerney R. Multidrug-resistant tuberculosis. BMC Infect

Dis 2008; 8:10.

15. WHO. Global tuberculosis control 2011. Geneva, Switzerland: World

Health Organization, 2011.

16. Rieder HL, Lauritsen JM, Naranbat N, Katamba A, Laticevschi D,

Mabaera B. Quantitative differences in sputum smear microscopy

results for acid-fast bacilli by age and sex in four countries. Int J

Tuberc Lung Dis 2009; 13:1393–8.

17. Minion J, Leung E, Menzies D, Pai M. Microscopic-observation drug

susceptibility and thin layer agar assays for the detection of drug

resistant tuberculosis: a systematic review and meta-analysis. Lancet

Infect Dis 2010; 10:688–98.

18. Musser JM. Antimicrobial agent resistance in mycobacteria: molecular

genetic insights. Clin Microbiol Rev 1995; 8:496–514.

19. WHO. Molecular line probe assays for rapid screening of patients at

risk of multidrug-resistant tuberculosis (MDR-TB). Geneva, Switzerland:

World Health Organization, 2008.

20. Hillemann D, Rusch-Gerdes S, Richter E. Feasibility of the GenoType

MTBDRsl assay for fluoroquinolone, amikacin-capreomycin, and

ethambutol resistance testing of Mycobacterium tuberculosis strains and

clinical specimens. J Clin Microbiol 2009; 47:1767–2.

21. WHO. Rapid implementation of the Xpert MTB/RIF diagnostic test:

technical and operational ‘‘how-to’’; practical considerations. Geneva,

Switzerland: World Health Organization, 2011.

22. Lawn S, Nicol M. Xpert MTB/RIF assay: development, evaluation and

implementation of a new rapid molecular diagnostic for tuberculosis

and rifampicin resistance. Future Microbiol 2011; 6:1067–82.

23. Boehme CC, Nabeta P, Hillemann D, et al. Rapid molecular detection

of tuberculosis and rifampin resistance. N Engl J Med 2010; 363:

1005–15.

24. Boehme CC, Nicol MP, Nabeta P, et al. Feasibility, diagnostic accuracy,

and effectiveness of decentralised use of the Xpert MTB/RIF test for

diagnosis of tuberculosis and multidrug resistance: a multicentre im-

plementation study. Lancet 2011; 377:1495–505.

25. Lawn SD, Brooks SV, Kranzer K, et al. Screening for HIV-associated

tuberculosis and rifampicin resistance before antiretroviral therapy

using the Xpert MTB/RIF assay: a prospective study. PLoS Med 2011;

8:e1001067.

26. Lobue P, Menzies D. Treatment of latent tuberculosis infection: an

update. Respirology 2010; 15:603–22.

27. Louw GE, Warren RM, Gey van Pittius NC, et al. Rifampicin re-

duces susceptibility to ofloxacin in rifampicin-resistant Mycobacte-

rium tuberculosis through efflux. Am J Respir Crit Care Med 2011;

184:269–76.

28. WHO. Global tuberculosis control. Geneva, Switzerland: World Health

Organization; 2010.

29. Cohen T, Murray M. Modeling epidemics of multidrug-resistant

M. tuberculosis of heterogeneous fitness. Nat Med 2004; 10:1117–21.

30. MSF. An evaluation of drug-resistant TB treatment scale-up. Geneva,

Switzerland: Médecins Sans Frontières, 2011.

31. Johnston JC, Shahidi NC, Sadatsafavi M, Fitzgerald JM. Treatment

outcomes of multidrug-resistant tuberculosis: a systematic review and

meta-analysis. PLoS One 2009; 4:e6914.

32. Orenstein EW, Basu S, Shah NS, et al. Treatment outcomes among

patients with multidrug-resistant tuberculosis: systematic review and

meta-analysis. Lancet Infect Dis 2009; 9:153–61.

33. Van Deun A, Maug AK, Salim MA, et al. Short, highly effective, and

inexpensive standardized treatment of multidrug-resistant tubercu-

losis. Am J Respir Crit Care Med 2010; 182:684–92.

34. Brust JC, Gandhi NR, Carrara H, Osburn G, Padayatchi N. High

treatment failure and default rates for patients with multidrug-resistant

tuberculosis in KwaZulu-Natal, South Africa, 2000–2003. Int J Tuberc

Lung Dis 2010; 14:413–9.

Tuberculosis Diagnostics: Challenges and Needs d JID 2012:205 (Suppl 2) d S239



35. Seung KJ, Omatayo DB, Keshavjee S, Furin JJ, Farmer PE, Satti H. Early

outcomes of MDR-TB treatment in a high HIV-prevalence setting in

Southern Africa. PLoS One 2009; 4:e7186.

36. Cox HS, Kalon S, Allamuratova S, et al. Multidrug-resistant tuber-

culosis treatment outcomes in Karakalpakstan, Uzbekistan: treatment

complexity and XDR-TB among treatment failures. PLoS One 2007;

2:e1126.

37. Shin SS, Keshavjee S, Gelmanova IY, et al. Development of extensively

drug-resistant tuberculosis during multidrug-resistant tuberculosis

treatment. Am J Respir Crit Care Med 2010; 182:426–32.

38. Fox W, Ellard GA, Mitchison DA. Studies on the treatment of

tuberculosis undertaken by the British Medical Research Council

tuberculosis units, 1946–1986, with relevant subsequent publications.

Int J Tuberc Lung Dis 1999; 3:S231–79.

39. Mitnick CD, Castro KG, Harrington M, Sacks LV, Burman W.

Randomized trials to optimize treatment of multidrug-resistant

tuberculosis. PLoS Med 2007; 4:e292.

40. WHO. Guidelines for the programmatic management of drug-resistant

tuberculosis: 2011 update. Geneva, Switzerland: World Health Orga-

nization, 2011.

41. Van Deun A, Salim MA, Das AP, Bastian I, Portaels F. Results of

a standardised regimen for multidrug-resistant tuberculosis in Bangladesh.

Int J Tuberc Lung Dis 2004; 8:560–7.

42. Diacon AH, Pym A, Grobusch M, et al. The diarylquinoline

TMC207 for multidrug-resistant tuberculosis. N Engl J Med 2009;

360:2397–405.

43. Ginsberg AM. Drugs in development for tuberculosis. Drugs 2010;

70:2201–14.

44. Matsumoto M, Hashizume H, Tomishige T, et al. OPC-

67683, a nitro-dihydro-imidazooxazole derivative with promising

action against tuberculosis in vitro and in mice. PLoS Med 2006;

3:e466.

45. Lounis N, Gevers T, Van Den Berg J, Andries K. Impact of the in-

teraction of R207910 with rifampin on the treatment of tuberculosis

studied in the mouse model. Antimicrob Agents Chemother 2008;

52:3568–72.

46. Cox H, Ford N, Keshavjee S, et al. Rational use of moxifloxacin for

tuberculosis treatment. Lancet Infect Dis 2011; 11:259–60.

47. Spigelman M, Woosley R, Gheuens J. New initiative speeds tubercu-

losis drug development: novel drug regimens become possible in years,

not decades. Int J Tuberc Lung Dis 2010; 14:663–4.

48. Global Alliance for TB Drug Development. TB Alliance 2009 annual

report: accelerating the pace, New York, NY: Global Alliance for TB

Drug Development, 2009.

49. Menzies D. Minimum number of drugs and duration for effective

MDR-TB treatment: individual patient meta-analysis. 41st IUATLD

World Conference on Lung Health. Berlin, Germany, 2010.

50. CIBMTR. Sharing knowledge, sharing hope: Centre for International

Blood and Marrow Transplant Research. Centre for International

Blood and Marrow Transplant Research. 2011. http://www.cibmtr.org/

About/Impact/Pages/index.aspx.

51. Bosne-David S, Barros V, Verde SC, Portugal C, David HL. Intrinsic

resistance of Mycobacterium tuberculosis to clarithromycin is effectively

reversed by subinhibitory concentrations of cell wall inhibitors. J An-

timicrob Chemother 2000; 46:391–5.

52. Mor N, Esfandiari A. Synergistic activities of clarithromycin and

pyrazinamide against Mycobacterium tuberculosis in human mac-

rophages. Antimicrob Agents Chemother 1997; 41:2035–6.

53. Budha NR, Lee RE, Meibohm B. Biopharmaceutics, pharmacokinetics

and pharmacodynamics of antituberculosis drugs. Curr Med Chem

2008; 15:809–25.

54. Friedland JS. Tackling tissue destruction in tuberculosis. Trans R Soc

Trop Med Hyg 2008; 102:953–4.

55. Garcia-Contreras L, Fiegel J, Telko MJ, et al. Inhaled large porous

particles of capreomycin for treatment of tuberculosis in a guinea pig

model. Antimicrob Agents Chemother 2007; 51:2830–6.

56. IUATLD. STREAM to test a 9-month MDR-TB treatment regimen

(in press). 2011. http://www.theunion.org/index.php/en/what-we-do/

research/clinical-trials/item/254-stream-to-test-a-9-month-mdr-tb-

treatment-regimen. Accessed 5 July 2011.

57. WHO. Report of the expert consultation on immunotherapeutic

interventions for tuberculosis. Geneva, Switzerland: World Health

Organization, 2007.

58. Schaaf HS, Marais BJ, Hesseling AC, Brittle W, Donald PR. Surveillance

of antituberculosis drug resistance among children from the Western

Cape Province of South Africadan upward trend. Am J Public Health

2009; 99:1486–90.

59. Gagneux S, Long CD, Small PM, Van T, Schoolnik GK, Bohannan BJ.

The competitive cost of antibiotic resistance in Mycobacterium tuber-

culosis. Science 2006; 312:1944–6.

60. Schaaf HS, Moll AP, Dheda K. Multidrug- and extensively drug-

resistant tuberculosis in Africa and South America: epidemiology,

diagnosis and management in adults and children. Clin Chest Med

2009; 30:667–83; vii-viii.

61. Cobelens FG. Tuberculosis risks for health care workers in Africa. Clin

Infect Dis 2007; 44:324–6.

62. WHO. WHO policy on TB infection control in health-care facilities,

congregate settings and households. Geneva, Switzerland: World Health

Organization, 2009.

63. Marais BJ, Schaaf HS. Childhood tuberculosis: an emerging and pre-

viously neglected problem. Infect Dis Clin North Am 2010; 24:727–49.

64. Al-Dabbagh M, Lapphra K, McGloin R, et al. Drug-resistant tubercu-

losis: pediatric guidelines. Pediatr Infect Dis J 2011; 30:501–5.

65. Schaaf HS, Marais BJ. Management of multidrug-resistant tuberculosis

in children: a survival guide for paediatricians. Paediatr Respir Rev

2011; 12:31–8.

66. Schaaf HS, Marais BJ, Whitelaw A, et al. Culture-confirmed childhood

tuberculosis in Cape Town, South Africa: a review of 596 cases. BMC

Infect Dis 2007; 7:140.

67. Schaaf HS, Willemse M, Donald PR. Long-term linezolid treatment

in a young child with extensively drug-resistant tuberculosis. Pediatr

Infect Dis J 2009; 28:748–50.

68. Warren RM, Streicher EM, Gey van Pittius NC, et al. The clinical

relevance of mycobacterial pharmacogenetics. Tuberculosis (Edinb)

2009; 89:199–202.

69. Schaaf HS, Victor TC, Engelke E, et al. Minimal inhibitory concen-

tration of isoniazid in isoniazid-resistant Mycobacterium tuberculosis

isolates from children. Eur J Clin Microbiol Infect Dis 2007; 26:203–5.

70. Schaaf HS, Victor TC, Venter A, et al. Ethionamide cross- and co-

resistance in children with isoniazid-resistant tuberculosis. Int J Tuberc

Lung Dis 2009; 13:1355–9.

71. Torres-Russotto D, Landau WM, Harding GW, Bohne BA, Sun K,

Sinatra PM. Calibrated finger rub auditory screening test (CALFRAST).

Neurology 2009; 72:1595–600.

72. Marais BJ, Rabie H, Cotton MF. TB and HIV in childrendadvances in

prevention and management. Paediatr Respir Rev 2011; 12:39–45.

S240 d JID 2012:205 (Suppl 2) d Zumla et al

http://www.cibmtr.org/About/Impact/Pages/index.aspx
http://www.cibmtr.org/About/Impact/Pages/index.aspx
http://www.theunion.org/index.php/en/what-we-do/research/clinical-trials/item/254-stream-to-test-a-9-month-mdr-tb-treatment-regimen
http://www.theunion.org/index.php/en/what-we-do/research/clinical-trials/item/254-stream-to-test-a-9-month-mdr-tb-treatment-regimen
http://www.theunion.org/index.php/en/what-we-do/research/clinical-trials/item/254-stream-to-test-a-9-month-mdr-tb-treatment-regimen

