101 research outputs found

    A Curious Choreography: for Pigments on Paper, Forty People Paired and Aalto University Campus

    Get PDF

    Discovering Many Diverse Solutions with Bayesian Optimization

    Full text link
    Bayesian optimization (BO) is a popular approach for sample-efficient optimization of black-box objective functions. While BO has been successfully applied to a wide range of scientific applications, traditional approaches to single-objective BO only seek to find a single best solution. This can be a significant limitation in situations where solutions may later turn out to be intractable. For example, a designed molecule may turn out to violate constraints that can only be reasonably evaluated after the optimization process has concluded. To address this issue, we propose Rank-Ordered Bayesian Optimization with Trust-regions (ROBOT) which aims to find a portfolio of high-performing solutions that are diverse according to a user-specified diversity metric. We evaluate ROBOT on several real-world applications and show that it can discover large sets of high-performing diverse solutions while requiring few additional function evaluations compared to finding a single best solution

    Heritability of mammographic breast density, density change, microcalcifications, and masses

    Get PDF
    Background: Mammographic features influence breast cancer risk and are used in risk prediction models. Understanding how genetics influence mammographic features is important since the mechanisms through which they are associated with breast cancer are not well known. Methods: Mammographic screening history and detailed questionnaire data for 56,820 women from the KARMA prospective cohort study were used. The heritability of mammographic features such as dense area (MD), microcalcifications, masses, and density change (MDC – cm2/year) were estimated using 1,940 sister pairs. We investigated the association between a genetic predisposition to breast cancer and mammographic features, among women with family history of breast cancer information (N=49,674) and a polygenic risk score (PRS, N=9,365). Results: Heritability was estimated at 58% (95% CI: 48%, 67%) for MD, 23% (2%, 45%) for microcalcifications, and 13% (1%, 25%) for masses. The estimated heritability for MDC was essentially null (2%, 95% CI: -8%, 12%). The association between a genetic predisposition to breast cancer (using PRS) and MD and microcalcifications was positive, while for masses this was borderline significant. In addition, for MDC, having a family history of breast cancer was associated with slightly greater MD reduction. Conclusions: We confirmed previous findings of heritability in MD, and also found heritability of the number of microcalcifications and masses at baseline. Since these features are associated with breast cancer risk, and can improve detecting women at short-term risk of breast cancer, further investigation of common loci associated with mammographic features is warranted to better understand the etiology of breast cancer.Swedish Research Council, 2018-02547Swedish Cancer Society, CAN 19 0266Stockholm County Council, LS 1211-1594Swedish Research Council, 70867902Accepte

    Relationship between insulin sensitivity and gene expression in human skeletal muscle

    Get PDF
    BackgroundInsulin resistance (IR) in skeletal muscle is a key feature of the pre-diabetic state, hypertension, dyslipidemia, cardiovascular diseases and also predicts type 2 diabetes. However, the underlying molecular mechanisms are still poorly understood.MethodsTo explore these mechanisms, we related global skeletal muscle gene expression profiling of 38 non-diabetic men to a surrogate measure of insulin sensitivity, i.e. homeostatic model assessment of insulin resistance (HOMA-IR).ResultsWe identified 70 genes positively and 110 genes inversely correlated with insulin sensitivity in human skeletal muscle, identifying autophagy-related genes as positively correlated with insulin sensitivity. Replication in an independent study of 9 non-diabetic men resulted in 10 overlapping genes that strongly correlated with insulin sensitivity, including SIRT2, involved in lipid metabolism, and FBXW5 that regulates mammalian target-of-rapamycin (mTOR) and autophagy. The expressions of SIRT2 and FBXW5 were also positively correlated with the expression of key genes promoting the phenotype of an insulin sensitive myocyte e.g.PPARGC1A.ConclusionsThe muscle expression of 180 genes were correlated with insulin sensitivity. These data suggest that activation of genes involved in lipid metabolism, e.g.SIRT2, and genes regulating autophagy and mTOR signaling, e.g.FBXW5, are associated with increased insulin sensitivity in human skeletal muscle, reflecting a highly flexible nutrient sensing.Peer reviewe

    Breast cancer prognosis predicted by nuclear receptor-coregulator networks

    Get PDF
    Although molecular signatures based on transcript expression in breast cancer samples have provided new insights into breast cancer classification and prognosis, there are acknowledged limitations in current signatures. To provide rational, pathway-based signatures of disrupted physiology in cancer tissues that may be relevant to prognosis, this study has directly quantitated changed gene expression, between normal breast and cancer tissue, as a basis for signature development. The nuclear receptor (NR) family of transcription factors, and their coregulators, are fundamental regulators of every aspect of metazoan life, and were rigorously quantified in normal breast tissues and ERα positive and ERα negative breast cancers. Coregulator expression was highly correlated with that of selected NR in normal breast, particularly from postmenopausal women. These associations were markedly decreased in breast cancer, and the expression of the majority of coregulators was down-regulated in cancer tissues compared with normal. While in cancer the loss of NR-coregulator associations observed in normal breast was common, a small number of NR (Rev-ERBÎČ, GR, NOR1, LRH-1 and PGR) acquired new associations with coregulators in cancer tissues. Elevated expression of these NR in cancers was associated with poorer outcome in large clinical cohorts, as well as suggesting the activation of ERα -related, but ERα-independent, pathways in ERα negative cancers. In addition, the combined expression of small numbers of NR and coregulators in breast cancer was identified as a signature predicting outcome in ERα negative breast cancer patients, not linked to proliferation and with predictive power superior to existing signatures containing many more genes. These findings highlight the power of predictive signatures derived from the quantitative determination of altered gene expression between normal breast and breast cancers. Taken together, the findings of this study identify networks of NR-coregulator associations active in normal breast but disrupted in breast cancer, and moreover provide evidence that signatures based on NR networks disrupted in cancer can provide important prognostic information in breast cancer patients

    Active Mobility – the New Health Trend in Smart Cities, or even More?

    Get PDF
    Active mobility (AM), including walking and cycling as single trips or in combination with public transport, has recently been promoted by health professionals – with WHO leading the way – to tackle health problems caused by physical inactivity. In fact only 1/3 of the European population is estimated to meet the minimum recommended levels of physical activity by the WHO of 30 minutes of moderate-intensity activity 5 times per week. Being aware that we spend between 70 to 80 min per day travelling and that 50% of all car trips (in Europe) are shorter than 5 km, active mobility has an enormous potential to get people more active. However, how is this knowledge of proven positive health effects of AM been taken into account – either by urban and transport planning authorities or by health administration? Is this „new health trend“ visible in strategies, cooperation or – what’s even more important – in implemented measures in smart cities? “Physical activity through sustainable transport approaches” (PASTA1)” is a European project addressing and analyzing the promising link between transport and health. It pursues an interdisciplinary approach involving scientists and leading experts from a range of disciplines, including (among others) transport and urban planning, public health, environmental sciences, climate change and energy, and transport economics. The overall aim of the project is to generate knowledge about the effects of AM in consideration of health effects. This paper reveals backgrounds and relationships between transport and health work in seven European case study cities (Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zurich) based on workshops and stakeholder interviews conducted in PASTA. Considering cities‘ framework conditions (strategies and policies, infrastructure and other measures promoting AM etc.) and comparing stakeholders‘ perspectives bring out that cities have to struggle with similar barriers and challenges. Otherwise they take promising approaches and efforts towards sustainable and healthy urban development; increasing synergies between the health and transport sector seems to be one of the missing links between transport and health. Good practices and new ideas for transport planners and health experts are provided aiding to create livable conditions through well-planned infrastructure, a safe environment and attractive public space, awareness-raising activities and various broader policies – including the health policy. After all AM should not just be an ephemeral health trend, but common (health) practice

    Physical Activity through Sustainable Transport Approaches (PASTA): a study protocol for a multicentre project

    Get PDF
    Introduction: Only one-third of the European population meets the minimum recommended levels of physical activity (PA). Physical inactivity is a major risk factor for non-communicable diseases. Walking and cycling for transport (active mobility, AM) are well suited to provide regular PA. The European research project Physical Activity through Sustainable Transport Approaches (PASTA) pursues the following aims: (1) to investigate correlates and interrelations of AM, PA, air pollution and crash risk; (2) to evaluate the effectiveness of selected interventions to promote AM; (3) to improve health impact assessment (HIA) of AM; (4) to foster the exchange between the disciplines of public health and transport planning, and between research and practice. Methods and analysis: PASTA pursues a mixed-method and multilevel approach that is consistently applied in seven case study cities. Determinants of AM and the evaluation of measures to increase AM are investigated through a large scale longitudinal survey, with overall 14 000 respondents participating in Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zurich. Contextual factors are systematically gathered in each city. PASTA generates empirical findings to improve HIA for AM, for example, with estimates of crash risks, factors on AM-PA substitution and carbon emissions savings from mode shifts. Findings from PASTA will inform WHO's online Health Economic Assessment Tool on the health benefits from cycling and/or walking. The study's wide scope, the combination of qualitative and quantitative methods and health and transport methods, the innovative survey design, the general and city-specific analyses, and the transdisciplinary composition of the consortium and the wider network of partners promise highly relevant insights for research and practice. Ethics and dissemination: Ethics approval has been obtained by the local ethics committees in the countries where the work is being conducted, and sent to the European Commission before the start of the survey. The PASTA website (http://www.pastaproject.eu) is at the core of all communication and dissemination activities. This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by-nc/3.0/igo/), which permits use, distribution, and reproduction for non-commercial purposes in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organisation or products. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL. Document type: Articl

    Physical Activity through Sustainable Transport Approaches (PASTA): A study protocol for a multicentre project

    Get PDF
    Introduction: Only one-third of the European population meets the minimum recommended levels of physical activity (PA). Physical inactivity is a major risk factor for non-communicable diseases. Walking and cycling for transport (active mobility, AM) are well suited to provide regular PA. The European research project Physical Activity through Sustainable Transport Approaches (PASTA) pursues the following aims: (1) to investigate correlates and interrelations of AM, PA, air pollution and crash risk; (2) to evaluate the effectiveness of selected interventions to promote AM; (3) to improve health impact assessment (HIA) of AM; (4) to foster the exchange between the disciplines of public health and transport planning, and between research and practice. Methods and analysis: PASTA pursues a mixed-method and multilevel approach that is consistently applied in seven case study cities. Determinants of AM and the evaluation of measures to increase AM are investigated through a large scale longitudinal survey, with overall 14 000 respondents participating in Antwerp, Barcelona, London, Örebro, Rome, Vienna and Zurich. Contextual factors are systematically gathered in each city. PASTA generates empirical findings to improve HIA for AM, for example, with estimates of crash risks, factors on AM-PA substitution and carbon emissions savings from mode shifts. Findings from PASTA will inform WHO's online Health Economic Assessment Tool on the health benefits from cycling and/or walking. The study's wide scope, the combination of qualitative and quantitative methods and health and transport methods, the innovative survey design, the general and city-specific analyses, and the transdisciplinary composition of the consortium and the wider network of partners promise highly relevant insights for research and practice. Ethics and dissemination: Ethics approval has been obtained by the local ethics committees in the countries where the work is being conducted, and sent to the European Commission before the start of the survey. The PASTA website (http://www.pastaproject.eu) is at the core of all communication and dissemination activities. This is an open access article distributed under the terms of the Creative Commons Attribution IGO License (https://creativecommons.org/licenses/by-nc/3.0/igo/), which permits use, distribution, and reproduction for non-commercial purposes in any medium, provided the original work is properly cited. In any reproduction of this article there should not be any suggestion that WHO or this article endorse any specific organisation or products. The use of the WHO logo is not permitted. This notice should be preserved along with the article's original URL

    Comparison of the oxidative reactivity of recombinant fetal and adult human hemoglobin: implications for the design of hemoglobin-based oxygen carriers.

    Get PDF
    Hemoglobin based oxygen carriers (HBOCs) have been engineered to replace or augment the oxygen carrying capacity of erythrocytes. However, clinical results have generally been disappointing due, in part due to the intrinsic oxidative toxicity of hemoglobin. The most common HBOC starting material is adult human or bovine hemoglobin. However, it has been suggested that fetal hemoglobin may offer advantages due to decreased oxidative reactivity. Large scale manufacturing of a HBOC will likely ultimately require recombinant sources of human proteins. We therefore directly compared the functional properties and oxidative reactivity of recombinant fetal (rHbF) and recombinant adult (rHbA) hemoglobin. rHbA and rHbF produced similar yields of purified functional protein. No differences were seen in the two proteins in: autoxidation rate; the rate of hydrogen peroxide reaction; NO scavenging dioxygenase activity; and the NO producing nitrite reductase activity. The rHbF protein was: less damaged by low levels of hydrogen peroxide; less damaging when added to human umbilical vein endothelial cells (HUVEC) in the ferric form; and had a slower rate of intrinsic heme loss. The rHbA protein was: more readily reducible by plasma antioxidants such as ascorbate in both the reactive ferryl and ferric states; less readily damaged by lipid peroxides; and less damaging to phosphatidylcholine liposomes. In conclusion in terms of oxidative reactivity there are advantages and disadvantages to the use of recombinant adult or fetal Hb as the basis for an effective HBOC

    Genomic correlates of glatiramer acetate adverse cardiovascular effects lead to a novel locus mediating coronary risk

    Get PDF
    Glatiramer acetate is used therapeutically in multiple sclerosis but also known for adverse effects including elevated coronary artery disease (CAD) risk. The mechanisms underlying the cardiovascular side effects of the medication are unclear. Here, we made use of the chromosomal variation in the genes that are known to be affected by glatiramer treatment. Focusing on genes and gene products reported by drug-gene interaction database to interact with glatiramer acetate we explored a large meta-analysis on CAD genome-wide association studies aiming firstly, to investigate whether variants in these genes also affect cardiovascular risk and secondly, to identify new CAD risk genes. We traced association signals in a 200-kb region around genomic positions of genes interacting with glatiramer in up to 60 801 CAD cases and 123 504 controls. We validated the identified association in additional 21 934 CAD cases and 76 087 controls. We identified three new CAD risk alleles within the TGFB1 region on chromosome 19 that independently affect CAD risk. The lead SNP rs12459996 was genome-wide significantly associated with CAD in the extended meta-analysis (odds ratio 1.09, p = 1.58×10-12). The other two SNPs at the locus were not in linkage disequilibrium with the lead SNP and by a conditional analysis showed p-values of 4.05 × 10-10 and 2.21 × 10-6. Thus, studying genes reported to interact with glatiramer acetate we identified genetic variants that concordantly with the drug increase the risk of CAD. Of these, TGFB1 displayed signal for association. Indeed, the gene has been associated with CAD previously in both in vivo and in vitro studies. Here we establish genome-wide significant association with CAD in large human samples.This work was supported by grants from the Fondation Leducq (CADgenomics: Understanding CAD Genes, 12CVD02), the German Federal Ministry of Education and Research (BMBF) within the framework of the e:Med research and funding concept (e:AtheroSysMed, grant 01ZX1313A-2014 and SysInflame, grant 01ZX1306A), and the European Union Seventh Framework Programme FP7/2007-2013 under grant agreement no HEALTH-F2-2013-601456 (CVgenes-at-target). Further grants were received from the DFG as part of the Sonderforschungsbereich CRC 1123 (B2). T.K. was supported by a DZHK Rotation Grant. I.B. was supported by the Deutsche Forschungsgemeinschaft (DFG) cluster of excellence ‘Inflammation at Interfaces’. F.W.A. is supported by a Dekker scholarship-Junior Staff Member 2014T001 - Netherlands Heart Foundation and UCL Hospitals NIHR Biomedical Research Centre
    • 

    corecore