21 research outputs found

    Efecto del condroitín sulfato en la sinovitis de pacientes con artrosis de rodilla

    Get PDF
    Objetivo: Evaluar mediante ecografía el efecto del condroitín sulfato (CS) en la sinovitis de pacientes conartrosis (OA) de rodilla, y colaborar en el conocimiento de los mecanismos bioquímicos involucrados enla inflamación sinovial.Métodos: Estudio controlado, aleatorizado, ciego simple de 70 pacientes con OA de rodilla tratadosdurante 6 meses con CS o paracetamol (PCT). Los pacientes fueron visitados a tiempo basal, a las 6semanas, y a los 3 y 6 meses para valorar el estado de su OA según los siguientes parámetros: sinovi-tis evaluada mediante ecografía (según definición de expertos OMERACT); dolor y función, mediante laescala visual analógica y el índice de Lequesne; y concentración de mediadores inflamatorios en suero ylíquido sinovial, mediante ELISA.Resultados: El tratamiento con CS redujo en un 50% el número de individuos que presentaban sinovitis;sin embargo, se observó un incremento de un 123% en el grupo tratado con PCT. En los pacientes sinsinovitis inicial, se observó el establecimiento de esta en un 85,71 y 25% de los casos tratados con PCT yCS, respectivamente. Ambas terapias mejoraron la función articular, pero únicamente el tratamiento conCS produjo una mejora significativa del dolor al final del tratamiento. Se observó una asociación entre eltratamiento con CS y los cambios en la concentración de RANTES y UCN en el líquido sinovial.Conclusiones: El tratamiento con CS tiene un efecto mantenido beneficioso, previniendo la aparición desinovitis o disminuyendo su presencia, así como reduciendo los síntomas de la artrosis. El PCT tambiénmejora los síntomas clínicos, pero no tiene ningún efecto sobre la inflamación. Las variaciones observadasen la concentración de RANTES y UCN podrían estar relacionadas con el efecto antiinflamatorio asociadoal tratamiento con CS

    Genetic Analysis of High Bone Mass Cases from the BARCOS Cohort of Spanish Postmenopausal Women

    Get PDF
    The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD) variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum Z-score >4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found (p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet 44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples, Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6. In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally, we present SNP genotyping and expression results that suggest additive effects of several genes for HBM

    Identification of a novel locus on chromosome 2q13, which predisposes to clinical vertebral fractures independently of bone density.

    Get PDF
    OBJECTIVES: To identify genetic determinants of susceptibility to clinical vertebral fractures, which is an important complication of osteoporosis. METHODS: Here we conduct a genome-wide association study in 1553 postmenopausal women with clinical vertebral fractures and 4340 controls, with a two-stage replication involving 1028 cases and 3762 controls. Potentially causal variants were identified using expression quantitative trait loci (eQTL) data from transiliac bone biopsies and bioinformatic studies. RESULTS: A locus tagged by rs10190845 was identified on chromosome 2q13, which was significantly associated with clinical vertebral fracture (P=1.04×10-9) with a large effect size (OR 1.74, 95% CI 1.06 to 2.6). Bioinformatic analysis of this locus identified several potentially functional SNPs that are associated with expression of the positional candidate genes TTL (tubulin tyrosine ligase) and SLC20A1 (solute carrier family 20 member 1). Three other suggestive loci were identified on chromosomes 1p31, 11q12 and 15q11. All these loci were novel and had not previously been associated with bone mineral density or clinical fractures. CONCLUSION: We have identified a novel genetic variant that is associated with clinical vertebral fractures by mechanisms that are independent of BMD. Further studies are now in progress to validate this association and evaluate the underlying mechanism

    PATJ Low Frequency Variants Are Associated with Worse Ischemic Stroke Functional Outcome: A Genome-Wide Meta-Analysis

    Get PDF
    RATIONALE: Ischemic stroke is among the leading causes of adult disability. Part of the variability in functional outcome after stroke has been attributed to genetic factors but no locus has been consistently associated with stroke outcome. OBJECTIVE: Our aim was to identify genetic loci influencing the recovery process using accurate phenotyping to produce the largest GWAS (genome-wide association study) in ischemic stroke recovery to date. METHODS AND RESULTS: A 12-cohort, 2-phase (discovery-replication and joint) meta-analysis of GWAS included anterior-territory and previously independent ischemic stroke cases. Functional outcome was recorded using 3-month modified Rankin Scale. Analyses were adjusted for confounders such as discharge National Institutes of Health Stroke Scale. A gene-based burden test was performed. The discovery phase (n=1225) was followed by open (n=2482) and stringent joint-analyses (n=1791). Those cohorts with modified Rankin Scale recorded at time points other than 3-month or incomplete data on previous functional status were excluded in the stringent analyses. Novel variants in PATJ (Pals1-associated tight junction) gene were associated with worse functional outcome at 3-month after stroke. The top variant was rs76221407 (G allele, β=0.40, P=1.70×10-9). CONCLUSIONS: Our results identify a set of common variants in PATJ gene associated with 3-month functional outcome at genome-wide significance level. Future studies should examine the role of PATJ in stroke recovery and consider stringent phenotyping to enrich the information captured to unveil additional stroke outcome loci

    Pro-osteoporotic miR-320a impairs osteoblast function and induces oxidative stress

    No full text
    MicroRNAs (miRNAs) are important regulators of many cellular processes, including the differentiation and activity of osteoblasts, and therefore, of bone turnover. MiR-320a is overexpressed in osteoporotic bone tissue but its role in osteoblast function is unknown. In the present study, functional assays were performed with the aim to elucidate the mechanism of miR-320a action in osteoblastic cells. MiR-320a was either overexpressed or inhibited in human primary osteoblasts (hOB) and gene expression changes were evaluated through microarray analysis. In addition, the effect of miR-320a on cell proliferation, viability, and oxidative stress in hOB was evaluated. Finally, matrix mineralization and alkaline phosphatase activity were assessed in order to evaluate osteoblast functionality. Microarray results showed miR-320a regulation of a number of key osteoblast genes and of genes involved in oxidative stress. Regulation of osteoblast differentiation and ossification appeared as the best significant biological processes (PANTHER P value=3.74E-05; and P value=3.06E-04, respectively). The other enriched pathway was that of the cellular response to cadmium and zinc ions, mostly by the overexpression of metallothioneins. In hOBs, overexpression of miR-320a increased cell proliferation and oxidative stress levels whereas mineralization capacity was reduced. In conclusion, overexpression of miR-320a increased stress oxidation levels and was associated with reduced osteoblast differentiation and functionality, which could trigger an osteoporotic phenotype

    Pro-osteoporotic miR-320a impairs osteoblast function and induces oxidative stress

    No full text
    MicroRNAs (miRNAs) are important regulators of many cellular processes, including the differentiation and activity of osteoblasts, and therefore, of bone turnover. MiR-320a is overexpressed in osteoporotic bone tissue but its role in osteoblast function is unknown. In the present study, functional assays were performed with the aim to elucidate the mechanism of miR-320a action in osteoblastic cells. MiR-320a was either overexpressed or inhibited in human primary osteoblasts (hOB) and gene expression changes were evaluated through microarray analysis. In addition, the effect of miR-320a on cell proliferation, viability, and oxidative stress in hOB was evaluated. Finally, matrix mineralization and alkaline phosphatase activity were assessed in order to evaluate osteoblast functionality. Microarray results showed miR-320a regulation of a number of key osteoblast genes and of genes involved in oxidative stress. Regulation of osteoblast differentiation and ossification appeared as the best significant biological processes (PANTHER P value=3.74E-05; and P value=3.06E-04, respectively). The other enriched pathway was that of the cellular response to cadmium and zinc ions, mostly by the overexpression of metallothioneins. In hOBs, overexpression of miR-320a increased cell proliferation and oxidative stress levels whereas mineralization capacity was reduced. In conclusion, overexpression of miR-320a increased stress oxidation levels and was associated with reduced osteoblast differentiation and functionality, which could trigger an osteoporotic phenotype

    Characterization of the rat cerebrospinal fluid proteome following acute cerebral ischemia using an aptamer-based proteomic technology

    Get PDF
    The limited accessibility to the brain has turned the cerebrospinal fluid (CSF) into a valuable source that may contribute to the complete understanding of the stroke pathophysiology. Here we have described the CSF proteome in the hyper-acute phase of cerebral ischemia by performing an aptamer-based proteomic assay (SOMAscan) in CSF samples collected before and 30 min after male Wistar rats had undergone a 90 min Middle Cerebral Artery Occlusion (MCAO) or sham-surgery. Proteomic results indicated that cerebral ischemia acutely increased the CSF levels of 716 proteins, mostly overrepresented in leukocyte chemotaxis and neuronal death processes. Seven promising candidates were further evaluated in rat plasma and brain (CKB, CaMK2A, CaMK2B, CaMK2D, PDXP, AREG, CMPK). The 3 CaMK2 family-members and CMPK early decreased in the infarcted brain area and, together with AREG, co-localized with neurons. Conversely, CKB levels remained consistent after the insult and specifically matched with astrocytes. Further exploration of these candidates in human plasma revealed the potential of CKB and CMPK to diagnose stroke, while CaMK2B and CMPK resulted feasible biomarkers of functional stroke outcome. Our findings provided insights into the CSF proteome following cerebral ischemia and identified new outstanding proteins that might be further considered as potential biomarkers of strok

    An abnormal inflammatory pattern associated with long-term non-progression of HIV infection impacts negatively on bone quality

    No full text
    Long-term non-progressors (LTNPs) are HIV-infected individuals (HIV+) whose viral replication is controlled. However, these individuals experience complications associated with HIV, among them, bone remodeling impairment. This study aims to perform a comprehensive bone health assessment and its association with the inflammatory status of HIV+ LTNPs. A cross-sectional study was conducted comparing bone strength components (bone mineral density and bone tissue quality) between age-, sex-, and comorbidities-matched groups of HIV+ LTNPs, HIV+ progressors, and HIV-negative individuals. A panel of bone turnover and inflammatory biomarkers was measured in fasting plasma using ELISA. Bone tissue quality was assessed by bone microindentation, a technique that directly measures the bone resistance to fracture and yields a dimensionless quantifiable parameter called bone material strength (BMSi). Thirty patients were included: ten LTNPs, ten HIV+ progressors, and ten HIV-negative individuals. LTNPs showed an abnormal pattern of immune activation that was represented by significantly lower levels of anti-inflammatory cytokine IL-10 (p = 0.03), pro-inflammatory cytokine IL-8 (p = 0.01), and TNF-α (p < 0.001) with respect to the other groups. Regarding bone health, LTNPs presented lower BMSi, and thus, worse bone tissue quality than HIV-negative individuals (83 (78-85) vs. 90 (89-93), respectively; p = 0.003), and also lower BMSi than HIV+ progressors (83 (78-85) vs. 86 (85-89), respectively; p = 0.022). A trend was found of lower BMSi in HIV+ progressors with respect to the HIV-negative individuals (86 (85-89) vs. 90 (89-93), respectively; p = 0.083). No differences were detected in bone mineral density between groups. In conclusion, LTNPs showed a different inflammatory profile, along with worse bone tissue quality, when compared to HIV+ progressors and HIV-negative individuals. This may contribute to increasing evidence that HIV infection itself has a deleterious effect on bone tissue, likely through a persistent altered inflammation status
    corecore