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Abstract

The aims of the study were to establish the prevalence of high bone mass (HBM) in a cohort of Spanish postmenopausal
women (BARCOS) and to assess the contribution of LRP5 and DKK1 mutations and of common bone mineral density (BMD)
variants to a HBM phenotype. Furthermore, we describe the expression of several osteoblast-specific and Wnt-pathway
genes in primary osteoblasts from two HBM cases. A 0.6% of individuals (10/1600) displayed Z-scores in the HBM range (sum
Z-score .4). While no mutation in the relevant exons of LRP5 was detected, a rare missense change in DKK1 was found
(p.Y74F), which cosegregated with the phenotype in a small pedigree. Fifty-five BMD SNPs from Estrada et al. [NatGenet
44:491-501,2012] were genotyped in the HBM cases to obtain risk scores for each individual. In this small group of samples,
Z-scores were found inversely related to risk scores, suggestive of a polygenic etiology. There was a single exception, which
may be explained by a rare penetrant genetic variant, counterbalancing the additive effect of the risk alleles. The expression
analysis in primary osteoblasts from two HBM cases and five controls suggested that IL6R, DLX3, TWIST1 and PPARG are
negatively related to Z-score. One HBM case presented with high levels of RUNX2, while the other displayed very low SOX6.
In conclusion, we provide evidence of lack of LRP5 mutations and of a putative HBM-causing mutation in DKK1. Additionally,
we present SNP genotyping and expression results that suggest additive effects of several genes for HBM.
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Introduction

Osteoporosis has a complex genetic background. Bone mineral

density (BMD) is a highly heritable intermediate phenotype that

correlates well with fracture risk [1–6]. BMD is distributed as a

Gaussian curve in the general population, with two small groups

having extremely low or extremely high BMD values at both ends.

These individuals with extreme phenotypes may bear infrequent

and highly penetrant alleles at a few specific loci. Alternatively, the

extreme phenotypes may depend on the presence of a high

number of common variants with low penetrance and additive

effects.

A few individuals with high bone mass (HBM, MIM#601884),

as defined by a sum Z-score .4 (total lumbar spine Z-score + total

femoral neck Z-score), have been reported to bear highly

penetrant missense alleles at the low-density lipoprotein recep-

tor-related protein 5 (LRP5, MIM#603506) locus that are

transmitted in an autosomal dominant way. More than 10 years

ago, two different groups found that LRP5 regulated bone mass

[7,8]. While inactivating mutations in LRP5 were shown to cause

osteoporosis-pseudoglioma syndrome [7], gain-of-function muta-

tions caused a high bone mass (HBM) phenotype [8]. This

phenotype has been associated with the LRP5–G171V mutation in

two independent pedigrees [8,9]. Six additional missense muta-

tions (D111Y, G171R, A214T, A214V, A242T and T253I), all in

the first b-propeller domain of LRP5, were identified in patients

who also showed an increased bone density [10]. The affected

individuals had elevated bone synthesis assessed by serum markers,

but normal bone resorption, bone architecture and serum calcium,

phosphate, PTH and vitamin D levels [8,9]. Significant pheno-

typic heterogeneity was reported, and some affected family

members also had a torus palatinus.
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LRP5 acts as a co-receptor with members of the Frizzled family

to activate the canonical Wnt/b-catenin signalling pathway, which

is crucial for bone formation [11]. This pathway is activated by the

binding of the appropriate Wnt protein to LRP5 and is blocked by

the binding of inhibitors such as Dickkopf-related protein 1

(encoded by DKK1, MIM#605189) and Sclerostin (encoded by

SOST). The HBM-causing mutation prevents the binding of these

two inhibitors. Mutations in SOST are the cause of van Buchem

disease [12] and sclerostosis [13], two pathologies with an

abnormally high bone density. On the other hand, Dkk1+/2 mice

showed a marked increase in bone mass [14].

The prevalence of HBM in the general population has been

estimated as 0.2–1% [8,15,16], but the genetic architecture of this

extreme phenotype remains poorly understood. However, recent

genome-wide association (GWA) analyses and meta-analyses have

established a number of genomic loci that explain differences in

BMD across the general population. In particular, Estrada et al.

[17] identified 56 such genomic loci and showed how they can be

used to calculate risk scores to predict BMD.

In order to explore the genetic constitution of a high bone mass

phenotype, our aims were, first, to establish the prevalence of

HBM in the BARCOS (BARCelona OSteoporosis) cohort of

postmenopausal Spanish women; second, to determine whether

any of the HMB cases carried LRP5 or DKK1 mutations that could

explain the phenotype; and third, to assess whether the HBM cases

were carriers of a low number of risk alleles of 55 autosomal

GWA-identified BMD loci. Also, we took advantage of the

availability of primary osteoblasts from two HBM cases to

characterize the osteoblast RNA in terms of osteoblast-specific

and/or Wnt-pathway genes by comparison with osteoblast RNA

from donors with normal or low BMD.

Materials and Methods

Ethics Statement
Both the Bioethics Committee of Universitat de Barcelona and

the Clinical Research Ethics Committee of Parc de Salud MAR

have emitted a favourable bioethical statement regarding the

present research. Specifically, the protocol for obtention of

peripheral blood from the BARCOS cohort women and the

protocol for the obtention of primary osteoblasts from bone

specimens extracted from knee samples otherwise discarded at the

time of orthopaedic surgery, were approved by both committees.

Written informed consents were obtained from the participants in

both instances.

Study Cohort
The study population (listed in Table 1) included the HBM

cases in the BARCOS cohort (n = 10 unrelated cases). This cohort

of postmenopausal women from the Barcelona area has been

described elsewhere [18,19]. At present time, it includes DXA

values for 1600 women and DNA samples for 1001 of them. Six

additional unrelated female HBM cases were recruited from 3

hospitals of Barcelona, Hospital de Sant Pau (1 case), CETIR (a

private medical services centre specializing in nuclear medicine

and other imaging modalities, 4 cases), and Hospital de

L’Esperança (1 case). Some relatives of particular cases were also

studied. Blood samples and written informed consent were

obtained in accordance with the regulations of the Clinical

Research Ethics Committee of Parc de Salud MAR. A total of

1600 dual-energy X-ray absorptiometry scans (DXA; QDR 4500

SL; Hologic, Waltham, MA, USA) of the women from this cohort

were analysed in order to pinpoint those HBM cases in which the

sum Z-score (hip plus lumbar spine) was equal to or greater than

four [8]. All DXA measurements were performed prior to any

treatment that could increase bone mass. Pathologic phenotypes

such as osteopetrosis or any other sclerosing bone disorders were

ruled out based on the absence of radiologic alterations in the skull

and long bones, the absence of any fragility fracture and the

absence of any underlying disease. For individuals HBM1, HBM8,

and HBM11, no DNA sample was available.

Sequencing of LRP5 and DKK1
The genomic DNA of n = 13 HBM cases (Table 2) was isolated

from peripheral blood leukocytes using conventional methods. In

all probands, LRP5 exons 2 to 4 (encoding the first beta-propeller

and harbouring all HBM-related mutations described so far) and

exons 9 to 16 (encoding the third and fourth beta-propellers

involved in binding to DKK1), and their intronic flanking regions,

and the four exons and flanking regions of DKK1 were amplified

and sequenced using specific primers. Mutation screening was

performed by direct sequencing using the BigDye v3.1 kit (Applied

Biosystems, Foster City, CA, USA) and the ABI PRISM 3730

DNA Analyzer (Applied Biosystems). Primers and PCR conditions

are listed in Table S1. Nomenclature for DNA variants followed

these reference sequences: NM_002335.2 for LRP5 and

NM_012242.2 for DKK1.

SNP Selection and Genotyping
Out of the 64 SNPs identified by Estrada et al. [17], we chose

55, one for each autosomal locus (listed in Table S2). Genotyping

of the 13 available HBM cases was carried out with a KASPar

v4.0 genotyping system at the Kbioscience facilities (KBioscience,

Herts, UK) using the Kraken allele-calling algorithm [20]. The

genotypes of 1001 BARCOS participants for the same SNPs were

already available, since this cohort was included in the replication

phase of the study by Estrada et al. [17]. One of the SNPs

(rs3790160) gave conflicting results and was eliminated from the

analyses. Quality control was carried out by resequencing 6.28%

Table 1. Z-score values, age and cohort of the participant
women.

Case Sum Z-score LS Z-score HIP Z-score Age Cohort

HBM11, 2 6.1 3.4 2.7 51 BARCOS

HBM2 4.6 3.0 1.6 57 BARCOS

HBM3 4.9 2.5 2.4 55 BARCOS

HBM4 4.5 2.5 2.0 62 BARCOS

HBM5 4.5 2.4 2.1 66 BARCOS

HBM6 5.1 2.6 2.5 52 BARCOS

HBM7 4.6 2.5 2.1 61 BARCOS

HBM82 7.9 4.0 3.9 55 BARCOS

HBM9 7.0 4.6 2.4 66 BARCOS

HBM10 5.1 2.8 2.3 75 BARCOS

HBM112 6.8 3.8 3.0 55 HSANTPAU

HBM12 6.4 3.8 2.6 59 CETIR

HBM13 5.2 2.6 2.6 67 CETIR

HBM14 6.0 3.7 2.3 64 CETIR

HBM15 4.5 2.4 2.1 54 CETIR

HBM16 5.3 3.6 1.7 77 HESP

1Deceased during the course of the study.
2No DNA sample available.
doi:10.1371/journal.pone.0094607.t001
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of the samples. The readings showed full concordance between the

two techniques.

Genetic Risk Allele Analysis
Fifty-five SNPs previously described to be associated with BMD

at GWA significance [17] were genotyped in the 13 HBM cases

and the genetic risk score for each individual was then calculated

by taking into account both the number of risk alleles and the

relative effect of each SNP on BMD, as carried out by Estrada et

al. [17]. This calculation was also performed for 1001 individuals

in the BARCOS cohort with available SNP genotype and LS-

BMD data. Briefly, the genotype of each SNP was transformed

into a risk score by taking into account the effects estimated by the

authors and listed in their Supplementary Table 9. The effect size

(beta parameter or slope) is the BMD decrease due to the presence

of one copy of the risk allele. The scores for homozygotes for the

risk allele were 2x the effect size; scores for heterozygotes were 1x

the effect size; and the scores for homozygotes for the alternative

allele were zero. For each individual, the risk scores of all SNPs

were summed up to obtain a global risk score, which was then

normalized by dividing it by the mean effect size of BARCOS.

Normalized global risk scores were sorted into five bins, as

described in Estrada et al. [17]. Missing genotypes within

BARCOS cohort individuals and also within HBM probands

were solved by replacing them by the mean of the corresponding

SNP scores in BARCOS. This strategy would attenuate the

variance of the overall group [21].

Primary Osteoblast Isolation and Cell Culture
Primary osteoblast (hOB) cells of postmenopausal women were

available from bone specimens extracted from knee samples that

would otherwise have been discarded at the time of artroplasty.

Both informed consent and BMD values were obtained from the

donors. Two of them were patients HBM10 and HBM16. Five

female donors with sum Z-score values (and ages) of 2.4 (85 y), 1.2

(74 y), 0.4 (79 y), 20.7 (70 y) and 22.2 (61 y), were used as

controls. The bone tissue used was obtained from a region at least

2 cm apart from the subchondral and the osteochondral plates far

from the described 6 mm layer of trabecular bone below the above

mentioned plates [22]. With this we aimed to minimize the

potential issues of using osteoblastic cells located close to the

damaged joint (given the known relationship and mutual

influences between the inflamed cartilage and adjacent bone cells)

and the alterations in phenotype and gene expression of the

osteoblasts in this zone [23,24]. The hOB cells were obtained, as

described previously [25,26]. Briefly, the trabecular bone was

separated and cut into small fragments, washed in phosphate

buffered solution (PBS) to remove non-adherent cells, and placed

on a petri dish. Samples were incubated in Dulbecco’s Modified

Eagle Medium (DMEM; Gibco; Invitrogen, Paisley, UK),

supplemented with sodium pyruvate (1 mM), L-glutamine

(1 mM), 1% penicillin/streptomycin, 10% fetal calf serum (FCS),

0.4% fungizone and 1% ascorbic acid. This allowed osteoblastic

precursor cells to migrate from the fragments and proliferate. After

confluence, cells were trypsinized and cultured in the same

medium. When sub-confluence was reached again, the medium

was aspirated and fresh medium with 10% serum or 0.1% bovine

serum albumin was added. Forty-eight hours later, the medium

was aspirated, cells were rinsed with phosphate-buffered saline,

and the RNA was extracted. Standard histochemistry or

quantitative PCR tests to measure alkaline phosphatase or

osteocalcin expression, respectively, were used to confirm the

osteoblastic nature of the cells, as described in [27].

RNA Extraction, cDNA Synthesis and Real-time PCR
Total cell RNA was extracted using the High Pure RNA

Isolation Kit (Roche Diagnostics, Mannheim, Germany) in

accordance with the manufacturer’s instructions. Two micrograms

of total RNA were reverse transcribed using random primers of

the High Capacity cDNA RT Kit (Applied Biosystems) in

accordance with the manufacturer’s instructions. The real-time

PCR (qPCR) reactions were performed in a final volume of 10 ml

using 20 ng of each cDNA, which was used as template for each

well in the RealTime ready Custom Panel 384 (Roche Diagnos-

tics). This custom panel included 88 genes selected by us, taking

into account, among other sources, the sites recently highlighted

by GWA analyses, in particular those in Estrada et al. [17] and

Duncan et al. [28]. All qPCR reactions for each sample were

performed in triplicate with the LightCycler 480 Real-Time PCR

System (Roche Diagnostics). Beta-2-microglobulin (B2M) was

chosen as the reference gene because of its minimum coefficient

of variation between samples.

Validation of the 11 genes with positive results in the expression

analysis described previously was performed with new assays

designed using the online ProbeFinder software (Roche Diagnos-

tics). Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and

18 S ribosomal (18 S) were tested as possible reference genes, and

GAPDH was selected. For this validation step, samples from three

additional control individuals were included in the analysis. Again,

all qPCR reactions for each sample were performed in triplicate

with the LightCycler 480 Real-Time PCR System (Roche

Diagnostics).

Table 2. Genotypes at LRP5 and DKK1.

LRP5 exonic SNPs
DKK1 exonic
changes

Case p.V667M1 p.A1330V1 p.V1119V1 Others1 p.A106A1 Variant

HBM2 - - Het. p.E644E Het. -

HBM3 - - Het. p.N705N Homo. -

HBM4 - Het. Het. p.N740N Het. -

HBM5 - - Het. p.E644E - -

HBM6 - - - - Homo. -

HBM7 - - Het. p.N740N - -

HBM9 - Het. Het. - Het. -

HBM10 - - Het. - - -

HBM12 - - Het. p.E644E Het. -

HBM13 Het. Het. Het. p.N740N Het. -

HBM14 - Het. Het. p.N740N Het. -

HBM15 - - - - - p.Y74F2

HBM16 - - - p.E644E - -

1Corresponding reference sequences, rs-numbers and MAFs are: LRP5
(NM_002335.2): p.E644E (rs2277268. 0.06); p.V667 (rs4988321. 0.03); p.N705N
(rs145456776. ,0.01); p.N740N (rs2306862. 0.15); p.V1119V (rs556442. 0.28);
p.A1330V (rs3736228. 0.13). DKK1 (NM_012242.2): p.A106A (rs2241529. 0.46). All
LRP5 variants listed under ‘‘Others’’. as well as the DKK1 p.Y74F were found in
heterozygous state.
2A novel missense change is indicated in bold. Het.: heterozygous for the
variant; Homo.: homozygous for the minor allele; NA: not available; -:
homozygous for the reference allele.
doi:10.1371/journal.pone.0094607.t002
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Statistical Analysis
Linear regression was analysed by first testing the most

important assumptions (normality and homoscedasticity). Calcu-

lations were performed with SPSS v11.5 (SPSS, Chicago, IL,

USA). To test skewness (or asymmetry of a distribution) of the

genetic risk distributions of the HBM cases and the BARCOS

controls, we used the robust medcouple (MC) measure, with left

and right tail weight measures (LMC and RMC), and constructed

the MC-LR confidence interval [29].

Results

HBM Prevalence in the BARCOS Cohort and Features of
the HBM Cases

In total, 1600 DXA scans were analysed across the BARCOS

cohort. Those cases in which the sum Z-score was equal to or

greater than four were considered HBM cases and further

analysed. Pathologic phenotypes were ruled out based on a more

in-depth examination of the medical history, a physical examina-

tion and a radiologic study. In the BARCOS cohort, 10 cases

(0.63% of individuals) fulfilled this HBM criterion. Six additional

HBM cases were recruited elsewhere (see Materials and Methods).

Z-score values, age and cohort for all HBM cases are listed in

Table 1.

Search for Mutations in LRP5 and DKK1
Exons 2 to 4 of LRP5, which encode the first beta-propeller of

the protein, and in which HBM mutations have previously been

described, were sequenced in the 13 HBM cases with available

DNA sample. Next, exons 9 to 16 were analysed, since they

encode beta-propellers 3 and 4, which have been described as

binding regions for the LRP5 inhibitor DKK1. No novel or

previously described causing mutations were found in any of these

exons. The missense LRP5 polymorphisms p.V667M (rs4988321)

and p.A1330V (rs3736228), associated with BMD in GWA

studies, together with other silent exonic variants found in the

HBM individuals, are shown in Table 2. Their frequencies in

HBM cases were similar to those found in the general population

(dbSNP; http://www.ncbi.nlm.nih.gov/SNP/). Regarding DKK1,

the four exons and flanking regions were amplified and sequenced

in the 13 HBM cases. One previously undescribed heterozygous

missense change (p.Y74F) and an exonic silent polymorphism were

found in different individuals (Table 2). The p.Y74F was not

present in the 1000 genomes database, while the tyrosine 74 and

adjacent residues were found to be conserved in the Dkk1

sequences of primates, rodents and cows, but not in C. lupus or D.

rerio (Fig. 1A). PolyPhen-2 (HumDiv) and SIFT scores for this

missense change were as follows: 0.48 (possibly damaging) and

0.38 (tolerated), respectively. Examination of the offspring of case

HBM15 revealed a cosegregation of this mutation with the HBM

phenotype (Fig. 1B). The daughter was found to be an HBM case

(sum Z-score: 4.9) and was heterozygous for the mutation, while

her brother had a normal sum Z-score value (0.5) and did not

carry this DNA change.

Analysis of 55 Bone Mineral Density Loci
Figure 2A shows the distribution of the BARCOS individuals

into five different osteoporosis risk score bins (bars) and the mean

LS-BMD value for each bin (triangles). Risk scores were derived

from the number and effect of the BMD-associated SNPs

described in Estrada et al. [17] (see Methods). As expected, a

decrease in BMD values was observed as the genetic risk score

increased (Pearson correlation coefficient = 20.972, p = 0.0057,

r2 = 0.94). Figure 2B shows a similar graph for the 11 HBM

individuals for which genotyping was successful (two of the HBM

cases -HBM14 and HBM16- had to be discarded because of sub-

optimal genotyping results). The frequency distribution shows a

shift towards the lower genetic risk score bins. Again, BMD values

(measured as Z-scores) decreased as genetic risk scores increased,

with the exception of one individual (HBM9), who presented the

maximum BMD value (Z-score = 7) and the largest genetic risk

score. Interestingly, the HBM phenotype in the family of HBM9

seems to segregate as a discrete trait: the mother is also a HBM

individual (sum Z-score = 4.4), while her eldest brother is not

(Fig. 2C). A correlation analysis between risk scores and Z-scores

of the 11 HBM individuals was not possible due to the small

sample size, since linear regression assumptions were not fulfilled.

To compare the two distributions their skewness was analyzed.

MC-LR 95% confidence intervals for skewness [(20.193, 0.116)

for Fig 2A and (21.528, 0.740) for Fig 2B] pointed to a loss of

symmetry for Fig 2B. However the intervals did overlap, due to the

limited sample size of the HBM group. Thus, significant

differences between the two groups could not be formally

demonstrated.

Expression Analysis of 88 Bone-development and/or
Wnt-pathway Genes

A transcriptomic analysis by qPCR was carried out in primary

osteoblast samples from two HBM and two age- and gender-

matched control individuals that were obtained after knee-

replacement orthopaedic surgery. Because of the small sample

size, the approach was only meant to be descriptive. In a first step,

11 out of 88 bone-development and/or Wnt-pathway genes were

selected (Table 3) due to differences above or below 2-fold in mean

expression level between the two HBM cases and the two control

individuals. Subsequently, these 11 genes were re-analysed using

samples from the two HBM and five control individuals (the initial

2 controls, whose Z scores were negative, and 3 new ones with Z-

scores of 0.4, 1.2 and 2.4). Because the sum Z-scores of the control

individuals were scattered across a wide range of values, expression

levels were plotted against sum Z-scores and we observed that

TWIST, ILR6, DLX3 and PPARG displayed a trend of correlation

(Figure 3,A–D). R2 values for the four genes were 0.676, 0.895,

0.807 and 0.461, respectively. However, due to the small sample

size, linear regression assumptions were not fulfilled. Thus, no p-

values are provided. We also observed that for SOX6 and RUNX2,

one of the HBM samples (but not the other) presented an

expression level that was 5-fold decreased or increased, respec-

tively, compared with controls (Fig. 3E and 3F, respectively).

Discussion

In this study we established that the prevalence of HBM in a

Spanish cohort of postmenopausal women is 0.63%. None of the

HBM individuals had mutations in the relevant exons of the LRP5

gene that could explain their phenotype. One individual had a

rare missense change in DKK1 (p.Y74F). The results of the analysis

of 55 osteoporosis-predisposing SNPs pointed to an inverse

correlation between risk alleles and BMD in this group of HBM

women, with the exception of one case with the highest BMD

value and the highest risk score. Finally, the results of an

expression analysis in primary osteoblasts showed a negative trend

between Z-scores and mRNA levels of TWIST1, IL6R, DLX3and

PPARG.

There are few studies that describe the prevalence of HBM in

the general population. In a recent one [15], the authors studied a

UK DXA-scanned population in which the prevalence of HBM

was 0.2% of individuals. The lower prevalence (0.2% versus our
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0.6%) may be due to differences in the study design, including the

definition of HBM, which was stricter in their study. All HBM-

related LRP5 mutations identified to date are located in the first

beta-propeller of the protein [10], while the mutations that cause

osteoporosis-pseudoglioma syndrome and exudative vitreoretino-

pathy are found all over the gene [30]. In our mutational analysis

of exons coding for the first beta-propeller (and for the third and

fourth, which have been described as binding regions for DKK1

[31]) no mutations were detected in the 13 HBM individuals

analysed. Our results are in agreement with those published by

Duncan et al. [32], who pointed out that ,2% of their HBM cases

were due to mutations on exons 2–4 and intron/exon boundaries

of the LRP5 gene, after analysing 98 patients.

We also analysed the DKK1 gene under the hypothesis that loss-

of-function mutations in this gene could have the same effect as

gain-of–function mutations in LRP5. In this regard, it has been

shown that bone mass was inversely proportional to Dkk1 levels in

mice [33], and there are therapies under development based on

DKK1 inhibition to increase bone mass (reviewed in Ke et al. [34]).

We found a missense change (p.Y74F) in heterozygosis in one

HBM individual. We have gathered some evidence that supports a

causative role for this mutation. The change affects a conserved

residue and it is predicted to be possibly damaging. Additionally, it

cosegregates with HBM in the nuclear pedigree of case HBM15.

In humans, the only report on DKK1 mutations is by Korvala et al.

[35], who recently suggested that a mutation in DKK1 may

predispose individuals to primary osteoporosis. No mutations were

found in the HGMD Professional 2012.4 database (released 29

March 2013), and a limited number of very rare missense changes

(31) were found in the 1000 genomes database (released 13

December 2012); eleven of these are predicted to be deleterious by

SIFT and probably damaging by PolyPhen. Whether these

changes, or the p.Y74F described in this paper, are associated

with a HBM phenotype remains an interesting open question,

which will require functional analyses to be confirmed.

To test whether HBM could be explained by a polygenic

additive effect of susceptibility loci, we chose to genotype the

GWA-discovered BMD loci defined by Estrada et al. [17]. We

were able to use the BARCOS cohort information for these same

loci as a framework for comparison. We would expect HBM

individuals to bear a high number of protective alleles or a low

number of risk alleles. As seen in Figure 2, the distribution of

genetic risk scores for the HBM cases shifted towards lower risk,

with the mode bin set at 44–48 instead of 48–52 and lost

symmetry. However, due to the limited number of HBM cases,

statistical significance was not achieved and, thus, no significant

differences between the small cohort of individuals with HBM and

the BARCOS cohort could be demonstrated.

Additionally, Z-score values decreased as genetic risk scores

increased, suggesting that common variation is playing a role in

determining HBM. However, we note that the only HBM

individual falling into the highest risk score bin (HBM9) was the

one with the highest Z-score and such a contradictory fact might

indicate the existence of a highly penetrant and probably rare

Figure 1. Mutation p.Y74F of DKK1 may be responsible for high bone mass in family HBM15. (A) Alignment of a partial human DKK1
sequence with those of several vertebrates. The tyrosine-74 residue is boxed. (B) Pedigree of case HBM15 (arrow): filled symbols indicate a high bone
mass phenotype. Numbers inside symbols are sum Z-score values.
doi:10.1371/journal.pone.0094607.g001
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Figure 2. Distribution of genetic risk scores in BARCOS and in the HBM group. Distributions of genetic risk scores among 1001 BARCOS
individuals (A) and 11 HBM probands (B), and their relationships with BMD or Z-score values, are shown. Histograms describe counts of individuals in
each genetic score category (left axis scale); (A) From left to right, exact numbers of individuals in each bin are: 88, 222, 355, 238 and 98. Triangles
(right axis scale) represent LS-BMD means and vertical bars depict their standard errors; (B) Diamonds represent mean Z-score values. (C) Pedigree of
family HBM9. Arrow indicates the proband HBM9; filled symbols represent presence of the HBM phenotype; numbers below symbols denote sum Z-
scores; NA: not available.
doi:10.1371/journal.pone.0094607.g002
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protective allele counterbalancing the additive effect of the risk

alleles. The HBM phenotype of this individual might be a

Mendelian trait due to an as-yet unidentified gene. Altogether,

these results are consistent with the coexistence of both polygenic

and Mendelian cases of HBM, which would then be a

heterogeneous trait.

To gain further insight into specific genes that might be involved

in HBM, we undertook a descriptive transcriptomic study of two

HBM cases for which we had access to primary osteoblast cultures.

When expression levels were compared between the HBM cases

and five controls, it was interesting to find four genes that

presented mRNA levels displaying a negative trend with BMD

Table 3. Eleven genes selected from the RealTime Custom
Panel1.

Wnt-pathway genes Bone biology genes

FZD3 BMP4 IL6R SOX6

SOST COL10A1 PPARG SP7 (OSX)

DLX3 RUNX2 TWIST1

1Those displaying at least a two-fold difference between the mean expression levels
of HBM10 and HBM16 and the mean of the two controls with negative Z-scores.
doi:10.1371/journal.pone.0094607.t003

Figure 3. Analysis of mRNA levels of several candidate genes in relation to BMD levels. (A–D) Trend of correlation between Z-score values
and gene expression levels of (A) TWIST1, (B) IL6R, (C) DLX3 and (D) PPARG. (E) One of the HBM samples presented an expression level of SOX6 5-fold
decreased in relation to the mean of five control individuals. (G) The other HBM sample presented an expression level of RUNX2 that was 6-fold
increased.
doi:10.1371/journal.pone.0094607.g003
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(TWIST1, IL6R, DLX3 and PPARG). Two other genes had one of

the two HBM samples with outlier mRNA levels: RUNX2 was 6-

fold elevated in one HBM sample, while SOX6 was 5-fold reduced

in the other HBM sample. In spite of the evident low sample size,

it is tempting to speculate that these genes (among others) may

play a role in HBM, acting in an additive way.

The limitations of this study include the small sample size of

HBM cases, which precluded reaching significance. Replication in

other cohorts will be necessary to confirm some of our results. This

is particularly important in the expression analysis, where the

number of analysed individuals was modest because of the great

difficulty in finding primary human osteoblasts. It may be argued

that the fact that the donors suffered from arthritis is a

confounding factor. However, all donors were affected with this

condition regardless of their BMD and it might be assumed that

the effect of artritis would be similar in all of the samples. To

minimize the impact of arthritis, caution was taken to obtain the

osteoblasts from locations far away from the lesion. However, a

systemic effect of arthritis cannot be totally ruled out.

In conclusion, to our knowledge, this genomic and transcrip-

tomic analysis of HBM is the first report of its kind. By combining

both strategies, it was possible to gain a deeper insight into the

genetic makeup of HBM. It includes suggestive evidence of genetic

heterogeneity based on the observation of additive effects of

several genes, on one hand, and monogenic cases not caused by

LRP5, on the other. DKK1, possibly responsible for one of these

monogenic cases, would be a novel HBM gene. Future studies in

enlarged cohorts may confirm the relevance of the genes described

here, some of which might be therapeutic targets for osteoporosis.
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