26 research outputs found

    Convolutional Neural Network for Stereotypical Motor Movement Detection in Autism

    Get PDF
    Autism Spectrum Disorders (ASDs) are often associated with specific atypical postural or motor behaviors, of which Stereotypical Motor Movements (SMMs) have a specific visibility. While the identification and the quantification of SMM patterns remain complex, its automation would provide support to accurate tuning of the intervention in the therapy of autism. Therefore, it is essential to develop automatic SMM detection systems in a real world setting, taking care of strong inter-subject and intra-subject variability. Wireless accelerometer sensing technology can provide a valid infrastructure for real-time SMM detection, however such variability remains a problem also for machine learning methods, in particular whenever handcrafted features extracted from accelerometer signal are considered. Here, we propose to employ the deep learning paradigm in order to learn discriminating features from multi-sensor accelerometer signals. Our results provide preliminary evidence that feature learning and transfer learning embedded in the deep architecture achieve higher accurate SMM detectors in longitudinal scenarios.Comment: Presented at 5th NIPS Workshop on Machine Learning and Interpretation in Neuroimaging (MLINI), 2015, (http://arxiv.org/html/1605.04435), Report-no: MLINI/2015/1

    HNT-AI:An Automatic Segmentation Framework for Head and Neck Primary Tumors and Lymph Nodes in FDG- PET/CT Images

    Get PDF
    Head and neck cancer is one of the most prevalent cancers in the world. Automatic delineation of primary tumors and lymph nodes is important for cancer diagnosis and treatment. In this paper, we develop a deep learning-based model for automatic tumor segmentation, HNT-AI, using PET/CT images provided by the MICCAI 2022 Head and Neck Tumor (HECKTOR) segmentation Challenge. We investigate the effect of residual blocks, squeeze-and-excitation normalization, and grid-attention gates on the performance of 3D-UNET. We project the predicted masks on the z-axis and apply k-means clustering to reduce the number of false positive predictions. Our proposed HNT-AI segmentation framework achieves an aggregated dice score of 0.774 and 0.759 for primary tumors and lymph nodes, respectively, on the unseen external test set. Qualitative analysis of the predicted segmentation masks shows that the predicted segmentation mask tends to follow the high standardized uptake value (SUV) area on the PET scans more closely than the ground truth masks. The largest tumor volume, the larget lymph node volume, and the total number of lymph nodes derived from the segmentation proved to be potential biomarkers for recurrence-free survival with a C-index of 0.627 on the test set

    Hybrid Deep Neural Network for Brachial Plexus Nerve Segmentation in Ultrasound Images

    Full text link
    Ultrasound-guided regional anesthesia (UGRA) can replace general anesthesia (GA), improving pain control and recovery time. This method can be applied on the brachial plexus (BP) after clavicular surgeries. However, identification of the BP from ultrasound (US) images is difficult, even for trained professionals. To address this problem, convolutional neural networks (CNNs) and more advanced deep neural networks (DNNs) can be used for identification and segmentation of the BP nerve region. In this paper, we propose a hybrid model consisting of a classification model followed by a segmentation model to segment BP nerve regions in ultrasound images. A CNN model is employed as a classifier to precisely select the images with the BP region. Then, a U-net or M-net model is used for the segmentation. Our experimental results indicate that the proposed hybrid model significantly improves the segmentation performance over a single segmentation model.Comment: The first two authors contributed equall

    Assessment of Radiation Dose to the Lens of the Eye and Thyroid of Patients Undergoing Head and Neck Computed Tomography at Five Hospitals in Mashhad, Iran

    Get PDF
    Introduction: In recent years, the number of computed tomography (CT) scans, which is a high-dose technique, has increased significantly. Head and neck CT is performed frequently and thyroid, particularly in children, has always been considered a sensitive organ. In recent years, radiobiologists and health physicists have been more concerned about the safety of lenses of the eyes, as cataract is no longer considered a deterministic effect. Material and Methods: In the present study, incurred doses to the thyroid and lens of the eye of 140 patients who underwent common head and neck CT at five hospitals were measured by thermoluminescent dosimeters (TLD-100). The patients were divided into two age groups of pediatrics and adults. TLD chips were placed on the patient’s skin surface. For each patient, scan parameters, sex and age were recorded. Exposed TLDs were read by a manual TLD reader. Results: The verage absorbed dose of the thyroid, as well as the lenses of the left and right eyes were 5.89±1.74, 15.84±2.81 and 16.25±2.57, respectively, for the pediatric patients and 5.00±1.17, 17.64±1.69 and 24.41±1.89 for adults. Patient-specific organ doses were influenced by the scanned region, scan protocol and patient's age. Conclusion: In the present study, the mean eye dose was much lower than the 500 mGy threshold recommended by International Commission on Radiological Protection (ICRP) for lens of the eye damage, thus, it appears to be clinically safe. While CT scan remains a crucial tool, further dose reduction can be achieved by controlling different factors affecting patient doses

    Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge

    Get PDF
    Consumer wearables and sensors are a rich source of data about patients' daily disease and symptom burden, particularly in the case of movement disorders like Parkinson's disease (PD). However, interpreting these complex data into so-called digital biomarkers requires complicated analytical approaches, and validating these biomarkers requires sufficient data and unbiased evaluation methods. Here we describe the use of crowdsourcing to specifically evaluate and benchmark features derived from accelerometer and gyroscope data in two different datasets to predict the presence of PD and severity of three PD symptoms: tremor, dyskinesia, and bradykinesia. Forty teams from around the world submitted features, and achieved drastically improved predictive performance for PD status (best AUROC = 0.87), as well as tremor- (best AUPR = 0.75), dyskinesia- (best AUPR = 0.48) and bradykinesia-severity (best AUPR = 0.95)

    The global burden of adolescent and young adult cancer in 2019 : a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background In estimating the global burden of cancer, adolescents and young adults with cancer are often overlooked, despite being a distinct subgroup with unique epidemiology, clinical care needs, and societal impact. Comprehensive estimates of the global cancer burden in adolescents and young adults (aged 15-39 years) are lacking. To address this gap, we analysed results from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019, with a focus on the outcome of disability-adjusted life-years (DALYs), to inform global cancer control measures in adolescents and young adults. Methods Using the GBD 2019 methodology, international mortality data were collected from vital registration systems, verbal autopsies, and population-based cancer registry inputs modelled with mortality-to-incidence ratios (MIRs). Incidence was computed with mortality estimates and corresponding MIRs. Prevalence estimates were calculated using modelled survival and multiplied by disability weights to obtain years lived with disability (YLDs). Years of life lost (YLLs) were calculated as age-specific cancer deaths multiplied by the standard life expectancy at the age of death. The main outcome was DALYs (the sum of YLLs and YLDs). Estimates were presented globally and by Socio-demographic Index (SDI) quintiles (countries ranked and divided into five equal SDI groups), and all estimates were presented with corresponding 95% uncertainty intervals (UIs). For this analysis, we used the age range of 15-39 years to define adolescents and young adults. Findings There were 1.19 million (95% UI 1.11-1.28) incident cancer cases and 396 000 (370 000-425 000) deaths due to cancer among people aged 15-39 years worldwide in 2019. The highest age-standardised incidence rates occurred in high SDI (59.6 [54.5-65.7] per 100 000 person-years) and high-middle SDI countries (53.2 [48.8-57.9] per 100 000 person-years), while the highest age-standardised mortality rates were in low-middle SDI (14.2 [12.9-15.6] per 100 000 person-years) and middle SDI (13.6 [12.6-14.8] per 100 000 person-years) countries. In 2019, adolescent and young adult cancers contributed 23.5 million (21.9-25.2) DALYs to the global burden of disease, of which 2.7% (1.9-3.6) came from YLDs and 97.3% (96.4-98.1) from YLLs. Cancer was the fourth leading cause of death and tenth leading cause of DALYs in adolescents and young adults globally. Interpretation Adolescent and young adult cancers contributed substantially to the overall adolescent and young adult disease burden globally in 2019. These results provide new insights into the distribution and magnitude of the adolescent and young adult cancer burden around the world. With notable differences observed across SDI settings, these estimates can inform global and country-level cancer control efforts. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd.Peer reviewe

    Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Deep Learning for Abnormal Movement Detection using Wearable Sensors: Case Studies on Stereotypical Motor Movements in Autism and Freezing of Gait in Parkinson's Disease

    Get PDF
    Inertial measurement sensing technology with the capability of capturing disease-relevant data has a great potential for improving the current clinical assessments and enhancing the quality of life in patients with neuro-developmental and neuro-degenerative diseases such as autism spectrum disorders (ASD) and Parkinson's disease (PD). The current clinical assessments can be improved by developing objective tools for the disease diagnosis and continuous monitoring of patients in out of clinical settings. To this end, it is necessary to develop automatic abnormal movement detection methods with the capability of adjusting on new patients' data in real-life settings. However, achieving this goal is challenging mainly because of the inter and intra-subject variability in acquired signals and the lack of labeled data. The research presented in this thesis investigates the application of deep neural networks to address these challenges of abnormal movement detection using inertial measurement unit (IMU) sensors with case studies on stereotypical motor movements in ASD and freezing of gait in PD patients. In this direction, this thesis provides four main contributions: i) A convolutional neural network (CNN) architecture is proposed to learn discriminative features which are sufficiently robust to inter and intra-subject variability. It is further shown how the proposed CNN architecture can be used for parameter transfer learning to enhance the adaptability of the abnormal movement detection system to new data in a longitudinal study. ii) An application of recurrent neural networks and more specifically long short-term memory (LSTM) in combination with CNN is proposed in order to incorporate more the temporal dynamics of IMU signals in the process of feature learning for abnormal movement detection. iii) An ensemble learning approach is proposed to improve the detection accuracy and at the same time to reduce the variance of models. iv) In the normative modeling framework, the problem of abnormal movement detection is redefined in the context of novelty detection and it is shown how a probabilistic denoising autoencoder can be used to learn the distribution of the normal human movements. The resulting deep normative model then is used in a novelty detection setting for unsupervised abnormal movement detection. The experimental results on three benchmark datasets collected from ASD and PD patients illustrate the high potentials of deep learning paradigm to address the crucial challenges toward real-time abnormal movement detection systems using wearable technologies
    corecore