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Abstract

Inertial measurement sensing technology with the capability of capturing

disease-relevant data has a great potential for improving the current clin-

ical assessments and enhancing the quality of life in patients with neuro-

developmental and neuro-degenerative diseases such as autism spectrum

disorders (ASD) and Parkinson’s disease (PD). The current clinical as-

sessments can be improved by developing objective tools for the disease di-

agnosis and continuous monitoring of patients in out of clinical settings. To

this end, it is necessary to develop automatic abnormal movement detection

methods with the capability of adjusting on new patients’ data in real-life

settings. However, achieving this goal is challenging mainly because of the

inter and intra-subject variability in acquired signals and the lack of labeled

data. The research presented in this thesis investigates the application of

deep neural networks to address these challenges of abnormal movement

detection using inertial measurement unit (IMU) sensors with case studies

on stereotypical motor movements in ASD and freezing of gait in PD pa-

tients. In this direction, this thesis provides four main contributions: i) A

convolutional neural network (CNN) architecture is proposed to learn dis-

criminative features which are sufficiently robust to inter and intra-subject

variability. It is further shown how the proposed CNN architecture can

be used for parameter transfer learning to enhance the adaptability of the

abnormal movement detection system to new data in a longitudinal study.

ii) An application of recurrent neural networks and more specifically long

short-term memory (LSTM) in combination with CNN is proposed in order

to incorporate more the temporal dynamics of IMU signals in the process

of feature learning for abnormal movement detection. iii) An ensemble

learning approach is proposed to improve the detection accuracy and at the

same time to reduce the variance of models. iv) In the normative modeling



framework, the problem of abnormal movement detection is redefined in

the context of novelty detection and it is shown how a probabilistic denois-

ing autoencoder can be used to learn the distribution of the normal human

movements. The resulting deep normative model then is used in a nov-

elty detection setting for unsupervised abnormal movement detection. The

experimental results on three benchmark datasets collected from ASD and

PD patients illustrate the high potentials of deep learning paradigm to ad-

dress the crucial challenges toward real-time abnormal movement detection

systems using wearable technologies.
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Chapter 1

Introduction

Human activity recognition (HAR) is an emerging research field in the mo-

bile and ubiquitous computing communities. Human movement analysis is

one of the main scopes of research in the HAR field. In recent years, human

movement analysis has been used in a variety of applications ranging from

daily life activity recognition [5, 6, 7, 8, 9, 10] to medical and health care

applications [11]. In the HAR context, a movement is defined as a change

in human body style in the space-time dimensions [12, 13]. For a specific

movement, patterns of these changes are consistent across different indi-

viduals, however, these normal patterns are subject to change in patients

who suffer from neuro-developmental and neuro-degenerative disabilities.

Thus, detecting and quantifying the deviation of body movement in pa-

tients with respect to the healthy population can provide an estimation of

the disease state in patients suffering from movement disorders.

Autism spectrum disorders (ASD) and Parkinson’s disease (PD) are re-

spectively, two high-prevalent neuro-developmental and neuro-degenerative

disorders manifesting specific motor symptoms [14, 15]. ASD is associ-

ated with the lack of tendency to social interactions and the presence of

repetitive behaviors [14]. Stereotypical motor movements (SMM) are a

major group of repetitive and aimless motions in individuals with ASD

1



2 Introduction

that include body rocking, mouthing, hand flapping, and complex finger

movements [16, 17, 18]. SMMs negatively affect the quality of life of ASD

children by interfering with their learning process and social interactions.

SMMs limit the performance of children in both learning new skills and

using the learned skills. Since these behaviors are socially stigmatizing

and abnormal, they cause difficulties in the social interaction with other

peers at school [14, 19]. Beyond the potential negative consequences of

SMMs on the quality of life of autistic children, these behaviors also in-

crease the stress and anxiety level in parents and caregivers [20]. Thus,

it is necessary to assist children with ASD by guiding efficient treatments

to alleviate the intensity and frequency of SMMs. Planning a success-

ful treatment depends on the comprehensive understanding and accurate

measurement of SMMs [19]. The traditional clinical assessments for mea-

suring SMMs rely on the paper-and-pencil rating scales, direct behavioral

observation, and video-based coding [19]. However, these approaches suffer

from major deficits such as subjectivity in rating, inefficiency, inaccuracy,

and high cost [21, 22, 23]. These limitations highlight the importance of

developing less obtrusive and more objective tools that allow continuous

monitoring of SMMs over time in real-life settings.

PD is one of the most common progressive neuro-degenerative diseases

with a higher prevalence in elderly people. It is estimated that around 1

million people in the USA and 10 million people worldwide suffer from this

disease [24]. PD is determined by some specific motor symptoms such as

tremor at rest, bradykinesia (slowness), muscle rigidity, impaired posture

and balance, and freezing of gait (FOG). These motor symptoms restrict

patients’ daily-life activities, cause the loss of mobility, and reduce the

social activities of patients [25]. For example, FOG is one of the most

restrictive motor deficits in PD: it causes difficulty in generating effective

forward-stepping movements and as a result, increases the risk of falling
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in generally elderly patients. The current clinical assessments are based

on the direct observation and patients’ report [26, 27] which suffer from

subjectivity in rating. Due to the rapid growth of PD in the elderly pop-

ulation and the limitations of the current clinical practices, it is necessary

to develop methods and tools which are able to unobtrusively and accu-

rately collect patients’ movement data, measure the disease state, assess

the effect of the medical interventions, and continuously follow-up patients

in realistic environments.

Recent enthusiasm toward collecting accurate human movement data

in real-life settings emerged a significant interest in using body-worn in-

ertial measurement unit (IMU) sensors [28, 29]. IMUs –with the built-in

accelerometer, gyroscope, and magnetometer sensors– measure the linear

acceleration and the angular velocity of body movements [30]. IMU sen-

sors are widely used in clinical applications [31]. Due to their small size

and light-weights, IMU is one of the most comfortable and less obtrusive

devices to collect the ecologically valid movement data from children with

ASD and elderly people with PD. Furthermore, IMUs are widely inte-

grated into mobile phones and smartwatches, thus provide an exceptional

opportunity for long-term monitoring of patients in both clinical and non-

clinical settings [32]. Achieving this goal, of course, demands developing

algorithms that are able to accurately and reliably detect abnormal pat-

terns in the collected human movement data beyond the clinical conditions.

To this end, many research studies have applied various machine learning

algorithms on the stream IMU signals from ASD and PD patients for the

abnormal movement detection [33, 34, 35, 36, 19].

Despite considerable efforts toward developing an accurate abnormal

movement detection system for PD and ASD patients, this still remains a

challenging task due to the high inter and intra-subject variability, high-

class imbalance, and lack of labeled data:
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Inter-subject and intra-subject variability: one of the main chal-

lenges toward developing an automatic abnormal movement detection sys-

tem is the inter and intra-subject variability. The inter-subject variability

refers to different topology (the type of movement), intensity, duration,

and frequency of abnormal movements between different patients. The

intra-subject variability is defined as the same differences within each in-

dividual patient. These variabilities cause a decrease in the performance

when the method is applied to new patients or even on the same patient

over time. Thus, it is crucial to develop an abnormal movement detec-

tion algorithm that is robust to these variations in data. One possible

solution to this problem is to extract a set of features that are robust to

inter and intra-subject variations [11, 37, 38, 39]. The traditional feature

extraction methods, so-called hand-crafted features, rely on the expert’s

domain knowledge. Thus, the extracted features may not contain all the

important information in the data. Hence, recently there has been a huge

interest in learning a high-level and at the same time lower dimensional

representation of data using deep neural networks.

Lack of labeled data: another main issue that limits the application

of supervised methods for abnormal movement detection in the real-life

scenarios is the lack of annotated data. Data annotation is an expensive

and time-consuming task, as an expert has to annotate the data in the

real-time settings or to use the captured video for the offline annotation in

the laboratory settings [40, 41, 42]. This issue is even more challenging in

the daily-life settings where monitoring subjects’ activities is impossible.

Class imbalance: class imbalance is a general issue in clinical datasets

as generally, the ratio of abnormal movements to normal movements is

small. In general, the class imbalance problem can be addressed simply by

balancing the training data based on the number of samples in the minority

class [19]. However, this results in a significant reduction in the sample size.
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Therefore, finding detection models that are able to handle the imbalanced

class distribution without losing the generalization performance is of high

priority in the abnormal movement detection context.

The aim of this thesis is to develop effective machine learning approaches

to address the aforementioned issues. The rest of the thesis is organized in

6 chapters as follows:

1. Chapter 2 provides the general background information on the dis-

cussed materials in this thesis. To this end, first, we will have an

overview on the definition of autism spectrum disorders and Parkin-

son’s disease, their symptoms, and the current clinical assessments for

detecting SMMs and FOGs. Second, a brief introduction to IMU sen-

sors –including the functionality of accelerometers and gyroscopes–

and the principles of IMU data analysis are presented. This chap-

ter is, then, finalized by a brief introduction to deep neural networks

architectures and algorithms.

2. Chapter 3 presents a new convolutional neural network (CNN) archi-

tecture for automatic feature learning from IMU signals. The pro-

posed CNN architecture is then used for parameter transfer learning

to address the problem of intra and inter-subject variability in indi-

viduals with ASD in the longitudinal scenarios.

3. Chapter 4 investigates the effect of incorporating temporal informa-

tion in the consecutive time intervals of IMU sensor data on the per-

formance of SMM detection. To this end, a long short-term memory

(LSTM) is combined with the CNN in order to model the tempo-

ral patterns in the sequence of multi-axes IMU signals. Further, an

ensemble learning based on the best LSTM learners is proposed to

provide a more stable SMM detector.
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4. Chapter 5 is devoted to addressing the problem of lack of labeled

data in patients with PD and individuals with ASD in real-life set-

tings. This problem is addressed by proposing a probabilistic novelty

detection approach. The proposed method allows to train a model

of normal human movements in an unsupervised manner and then to

detect FOG episodes in PD patients and SMMs in individuals with

ASD as deviations from the learned model.

5. Finally, Chapter 6 summarizes our findings in this thesis, draws con-

clusions, and gives an outlook to possible future works.



Chapter 2

Background

This chapter provides the background information on all needed materi-

als for understanding the contributions of this thesis in the next chapters.

To this end, first, autism spectrum disorder (ASD) and Parkinson disease

(PD), their symptoms, and their current clinical assessments are briefly

described and the importance of developing automatic methods for detect-

ing abnormal movements in ASD and PD patients is motivated. Then, the

operating principles of inertial measurement units (IMU) are introduced

and a general pipeline for IMU data analysis is explained. This chapter

is finalized by a general introduction to employed deep neural network

architectures in this thesis.

2.1 Autism Spectrum Disorder

ASD is a neuro-developmental disorder that is associated with i) the diffi-

culty in the social communication and interaction with other people; and

ii) the unusual repetitive and restricted behaviors in children [43, 44, 14].

It is estimated that the prevalence of ASD is about 1 in each 68 chil-

dren in the United States [45]. The prevalence of ASD is 4 times more

in males than females [14]. Despite a general agreement on the genetic

source of ASD, still, the genes that predispose children to ASD have re-

7
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mained uncertain [43, 14, 44]. Recent researches in this area suggest that

the advanced age in parents and having certain genetic conditions (such as

Down syndrome, fragile X syndrome, and Rett syndrome) are associated

with high ASD risk [43, 44].

The symptoms of ASD gradually develop in the first three years of life.

These symptoms present a high heterogeneity of types and severity over a

period of time between and within individuals [46]. The difficulty in social

interaction, as one of the symptoms in individuals with ASD, is determined

by abnormal behavioral symptoms such as limited visual and auditory

connection with surrounding people and having trouble in understanding

or predicting other people’s actions [46]. Individuals with ASD are also

engaged in repeating certain unusual movements such as hand flapping,

head rolling, finger wiggling, mouthing, and body rocking [47, 48]. These

complex, repetitive, aimless, and involuntary behaviors, commonly referred

to as stereotypical motor movements (SMMs) [49].

SMMs impair the quality of life in individuals with ASD [50] as these

behaviors highly interfere with learning new skills [51, 52] and with the

social interaction with other peers in the school or other social commu-

nities [53]. The high prevalence of autism and the negative consequences

on patients’ quality of life emerge the necessity of measuring SMMs and

providing possible interventions to mitigate these abnormal behaviors.

Traditional approaches to measure SMMs include paper-and-pencil rat-

ing, direct behavioral observation, and video-based coding [17, 18]. Paper

and pencil rating is an interview-based approach which suffers from the sub-

jectivity in rating and inability to accurately detect the severity, amount,

and duration of SMMs [22]. In the direct behavioral observation approach,

SMMs are directly observed and documented by clinicians. This is not a

reliable approach as clinicians assess and measure SMMs based on a short

observation. Furthermore, in high-speed movements, it is impossible for
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clinicians to accurately document all SMMs episodes [21]. Video-based ap-

proaches rely on analysis of SMMs using the video capturing. This method

is more precise than two previous approaches but it is impractical as a ubiq-

uitous tool, as its application is limited to very controlled clinical settings

[23].

Considering the importance of quantifying the severity and frequency of

SMMs in the diagnosis and treatment [19] of children with ASD, there is a

pressing need to develop automatic, accurate, and time-efficient methods

for SMM detection. Recently body-worn sensor technology has offered an

effective tool for collecting accurate human movement data with the possi-

bility of time-efficient SMM detection. This technology has a great poten-

tial to enhance the current clinical assessment by continuously monitoring

autistic children. However, the high variability of abnormal movements in

children with ASD imposes new challenges to this field.

2.2 Parkinson

PD is the second most common neuro-degenerative disorder that affects

the functioning of the motor system in the brain. The PD prevalence is

estimated to be around 1% in the elderly population [15]. The etiology of

PD has not been entirely understood but many research studies suggest

that both genetic and non-genetic factors effectively contribute to the oc-

currence of PD [15]. The pathogenic process that causes PD starts with

the reduction of dopamine level in the brain. Dopamine is produced by

substantia nigra in the brain, acts as a neurotransmitter, and plays a role

in initiating movements and speech. Thus, the lack of dopamine causes

malfunctioning in the brain’s motor system [1]. Figure 2.1 depicts the dif-

ference between the structure of substantia nigra in a healthy subject and

a patient with PD.
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Figure 2.1: Comparison of the substantia-nigra in a healthy subject and a patient with

PD [1].

Motor symptoms in PD patients appear gradually over time and may

start with slight tremors in the patient’s hand [54]. The most common

types of motor symptoms that PD patients experience are bradykinesia

(the inability to move the body swiftly), tremor at rest, muscle rigidity,

impaired posture and balance, and freezing of gait (FOG) [55]. FOG is a

gait disorder which occurs in the later stages of the PD [56]. FOG appears

more frequently when the patient changes his/her direction or walks in

narrow spaces. FOG episodes impair severely the quality of life in elderly

patients as they increase the risk of falling [56, 57].

To estimate the disease severity and to optimize treatment strategies,

it is necessary to accurately measure the duration and severity of abnor-

mal movements in PD patients [58]. The traditional clinical evaluations

include direct observation and patients’ self-report [26, 59]. In the direct

observation, clinicians assess the motor symptoms in patients directly dur-

ing simple motor tasks such as getting up from a chair and walking a short

distance [26]. This approach may not truly present the patients’ problem,

as the clinical circumstances may have an effect on the severity and oc-

currence of patients’ abnormal motor movements [60, 59]. For example,

even patients who are severely debilitated by frequent freezing episodes
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at home, show fewer FOG episodes in clinical circumstances. The pa-

tients’ self-report approach suffers from the subjectivity and the existence

of bias in the rating [61, 59]. For example, a patient may not be aware

of the relation between the off/on medical conditions and the occurrence

or severity of disorder movements which may influence his/her self-report.

To overcome these limitations, many research studies have focused on us-

ing wearable sensors which offer great tools for collecting accurate human

movement data in realistic environments [62, 63]. Wearable sensors provide

the possibility of monitoring the patients more frequently than the current

clinical practices with minimum costs. Furthermore, they provide the po-

tential for reliable and rapid feedback on patients’ status. This reliable

and rapid feedback has a positive effect on improving physical activities in

PD patients [64, 27].

2.3 Wearable Sensor Technology for Human Activity

Recognition

Accelerometers and gyroscopes are the most common wearable sensors

for measuring the frequency, intensity, and duration of physical activi-

ties [65, 66, 30, 28]. These sensors in combination with magnetometer

sensors are typically integrated into the same package, so called the in-

ertial measurement unit (IMU) [30]. Due to the small size and low cost,

IMUs offer the most appropriate and comfortable devices to be attached

to human bodies for capturing human movement data without negatively

affecting the quality of the motion of interest. In contrast to other motion

sensing technologies, e.g., Kinect sensors or generic cameras, IMUs do not

need any additional sensing infrastructure, which is a beneficial property

especially in real-life settings [12].

Accelerometers measure the linear acceleration along 3 orthogonal axes [30].
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Despite the differences in transducers and mechanisms used in their design,

all type of accelerometers quantify the effect of the force applied to the sen-

sor as a measure of the acceleration [65, 12, 67, 8]. Accelerometers are used

in numerous consumer and industrial applications ranging from monitoring

mechanical shock [68] to inertial navigation systems [69] and virtual real-

ity [70]. Recently, accelerometers with the micro-electromechanical system

(MEMS) technology have been widely used in mobile phones and smart

watches [71]. The high resolution and sensitivity have made MEMS ac-

celerometers suitable devices to be used for sensing human movements [72].

The most popular MEMS accelerometers employed for the human move-

ment measurement are variable capacitive accelerometers that measure the

acceleration by sensing changes in the capacitance [65]. Variable capacitive

accelerometers are comprised of differential capacitors with the fixed exter-

nal plates and a movable proof mass suspended between the fixed plates.

The proof mass is further attached to springs. Using this configuration,

the external acceleration causes a vibration in the proof mass that changes

the capacity of capacitors, resulting in an output signal with an amplitude

proportional to the acceleration [68, 65]. Figure 2.2 shows the structure

of a capacitive MEMS accelerometer with one degree of freedom (i.e., one

sensing axis).

Depending on their degree of freedom, accelerometers can be categorized

into the uniaxial (1-axis), biaxial (2-axis), or tri-axial (3-axis). In the case

of 3-axis accelerometers, a proof mass is shared between three oriented

orthogonal capacitive sensing structure which can simultaneously measure

the acceleration along X, Y, and Z axes [12]. The measured acceleration

is the sum of the gravitational and movement acceleration along a sensing

direction, as follow [73]:

a = ag + al + η (2.1)
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Figure 2.2: (a) Scanning electron microscopy (SEM) view of a MEMS accelerometer [2];

(b) A general scheme of one-axis MEMS accelerometer.

where ag is the gravitational acceleration, al is the movement accelera-

tion, and η is the noise. The existence of the gravitational acceleration is

beneficial only when there is no movement acceleration. In this case, the

gravitational acceleration helps to determine the orientation of the device

related to the gravitational direction. The presence of the gravitational

acceleration term during the device movement makes the analysis of the

motion challenging as the measurement contains the gravitational acceler-

ation added to the actual acceleration [74, 65].

As it was previously mentioned, accelerometers can only capture the

linear acceleration of the sensing device. In order to measure the rotation

of the sensing device, we need to use gyroscopes. Gyroscopes measure

the angular velocity (i.e., rotational speed) and the angular displacement

around a particular axis in radians per second [73].

In recent years, MEMS gyroscopes have become the most common type

of gyroscopes used in the portable devices, due to their small size, af-
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fordable cost, and the capability of integration with the digital interfaces

into one package [3, 75]. Gyroscopes are recently used in a variety of ap-

plications such as robotic applications, navigation systems, and medical

applications [68, 3].

MEMS gyroscopes employ a vibrating mechanical element to detect the

angular velocity. These sensors transfer the energy between two vibration

modes caused by Coriolis acceleration [3, 68]. Coriolis acceleration refers

to an acceleration that appears in a rotating reference frame and is di-

rectly proportional to the angular velocity [68]. To better understand the

Coriolis acceleration, assume a particle moving in the space with a velocity

vector ν while an observer is anchored on the z-axis of a coordinate system

watching the particle (see Figure 2.3 (a)). If the coordinate system rotates

around the x-axis with an angular velocity equal to Ω, the observer sees the

particle moving toward the z-axis in the rotating reference frame with the

acceleration equal to acoriolis = 2ν ×Ω, while there is no real force applied

to the particle to move along the z-axis. All vibratory gyroscopes, in fact,

operate based on this basic principle[68, 3].

The classical vibrating MEMS gyroscopes use the tuning-fork configu-

ration [75]. As it is shown in Figure 2.3, (b) the tuning-fork is comprised

of a pair of proof masses which oscillate in opposite directions but with

the same amplitude. When the structure starts to rotate, the proof masses

are driven at resonance along the x-axis. Then the Coriolis acceleration

produced by rotation around the z-axis is sensed capacitively along the y-

axis [4, 75]. The Coriolis force is proportional to the applied angular rate,

from which displacements can be measured.

Magnetometers measure the strength of the magnetic field in units of

Gauss [76]. Magnetometers are often used in conjunction with accelerom-

eters and gyroscopes to improve the human movement sensing [77]. The

main challenge for using magnetometers to collect the human movement
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Figure 2.3: (a) The Coriolis acceleration [3], (b) The schematic of MEMS gyroscope with

the tuning-fork configuration [4].

data is their high sensitivity to the magnetic field produced by other sur-

rounding electronic devices [78].

Although body-worn sensors provide the possibility of collecting hu-

man movement data in real-life settings, the performance of these sensors

highly depends on their deployment on body [79]. The position and the

number of embedded wearable sensors have a decisive role in collecting

high-resolution movement data [80, 81]. While attaching multiple sensors

on one limb provides higher resolution data, it is burdensome for individu-

als with ASD who suffer from sensory sensitivities and for PD patients who

have movement disability [82, 31]. Thus, finding an optimal placement to

attach wearable sensors on human body parts, specifically in the clinical

applications is crucial [82] and it is a subject of interest in many research

studies [83, 84].
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Figure 2.4: A general pipeline for abnormal movement detection using wearable sensors.

2.4 Pipeline for IMU Data Analysis

As illustrated in Figure 2.4, the general pipeline for human movement anal-

ysis using wearable sensors is comprised of 5 steps [11]: i) data collection;

ii) preprocessing; iii) data segmentation; iv) feature extraction, and v)

classification. In the following, we will briefly explain these steps with the

main focus on abnormal movement detection.

In the data collection phase, the stream of raw data are captured using

sensors attached to different parts of the body. Then in the preprocessing

step, using the band-passed filtering in the frequency domain, the noise

and the artifact in the signal are suppressed. Furthermore, if the data

are recorded using different sensor types, the sampling rates of data are

equalized to a fixed frequency rate using up-sampling or down-sampling

techniques. The preprocessed data then are segmented into overlapping

fixed-length intervals using the sliding-window technique. Finding the op-

timal length of the sliding window is a research challenge as it highly de-

pends on the characteristics of the under-study movement, and it highly

affects the performance of the system [11, 85]. The window length can be
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selected based on the duration of the activity or the motion of interest.

For example, for daily life activities, where there is a transition between

short and long activities, a sliding window with the size around 1.5 sec-

onds was found to be a close-to-optimal choice [86]. However, for the long

periodic activities such as walking or running, the longer window size up

to 32 seconds is more appropriate [87].

The segmented data are then fed to the feature extraction step. In this

step, the key information from the movement data within each segment is

extracted. In fact, the feature extractor maps the segmented raw data to a

set of informative features for further analysis. Features can be extracted

in time or frequency domain. The most popular time and frequency do-

main features extracted from human movement data are mean, variance,

zero-crossing, energy, entropy, and fast Fourier transform peaks [5, 74, 19].

Despite the popularity of using these hand-crafted features [88], manual

feature extraction suffers from restricting shortcomings: First, this ap-

proach relies on the expert’s domain knowledge thus the important infor-

mation in the signal may not be adequately extracted. Second, extracting

these features in some cases is a time-consuming process [88, 38] that re-

stricts their application in real-time scenarios. To address these issues,

automatic feature learning methods have been recently proposed. These

methods are based on training a deep neural network such as convolutional

neural networks or autoencoders on the raw signal data to learn a set of

discriminative features [37, 89, 90].

The last step of the IMU data analysis is the classification. In this phase,

the learned/extracted features are fed to a classifier to differentiate the nor-

mal samples from the abnormal ones. Many research studies for abnormal

movement detection have focused on applying supervised learning meth-

ods [39, 90, 19, 91]. These methods rely on maximizing the likelihood [92],

P (y|X, θ), where X ∈ Rn×p is a given feature matrix for n samples and
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p features, θ are the parameters of the classifier that can be learned by

maximizing the negative-log likelihood or alternatively by minimizing em-

pirical risk, and y ∈ {0, 1}n is the corresponding target class vector for the

normal and abnormal samples.

2.5 Performance Evaluation

Evaluating the performance of an abnormal movement detection system

is a crucial task, as it helps to find the best parameters and components

in each step of the IMU data analysis pipeline. Since data collected from

ASD and PD patients are highly unbalanced, the prediction accuracy alone

cannot be used as a measure for the true performance of a classifier [11].

In this case, other performance metrics such as F1-score, precision, recall,

and the area under the receiver operating characteristic (ROC) curve are

more appropriate metrics. In the following, the metrics that are used for

performance evaluation in this thesis are briefly described.

F1-score is known as a popular performance metric when dealing with

the skewed class distribution. It is a robust measure against the unbalance

of test sets as it uses a harmonic average of precision and recall [93]:

F1 = 2× Precision×Recall
Precision+Recall

where precision and recall are respectively computed by TP
TP+FP and TP

TP+FN .

In the abnormal movement detection context, the true positive (TP) is

the number of abnormal movement samples that are correctly determined

as abnormal samples in the test phase. In contrast, false positive (FP)

is the number of normal movement samples that are wrongly assigned

to the abnormal movement class, and false negative (FN) is defined as

the number of abnormal movement samples that are wrongly identified as

normal movement samples.
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The Area under the ROC curve (AUC) provides a summary mea-

sure of the relationship between the true positive rate and false positive

rate [94] when changing the decisive threshold on the probability of each

sample being an abnormal sample [11, 94]. The AUC is also a robust

measure against the class imbalance.

2.6 Deep Neural Networks

Recent advances in deep learning extend applications of multilayer per-

ceptron (MLP) theory by providing the possibility of training more than

two hidden layers using backpropagation [95]. Applications of deep neu-

ral networks have recently grown in different research domains ranging

from speech recognition [96, 97], to medical diagnosis applications [98] and

robotics [99]. In the following, basic concepts related to the deep learning

approaches that are used in this thesis are briefly reviewed.

2.6.1 Convolutional Neural Networks

Convolutional neural networks (CNN) are a type of neural networks which

are suitable to be applied to data that have a grid-like topology such as

time-series and images [100]. A typical CNN has a hierarchical architecture

which alternates a convolution layer, a rectified linear unit (ReLU) acti-

vation function, and a pooling layer to summarize the large input spaces

into a lower dimensional feature space. In the following, we briefly describe

these parts and their functionality.

Convolution layer: depending on the structure of data 1D, 2D, or 3D

convolutional layers might be used in a CNN architecture. As an example in

a 2D-CNN case, a convolution layer receives the input 2D-data, I, convolves

it with a set of K 2D-filters/kernels with the size of m× n, and produces

a feature map S. A discrete convolution operation is defined as follows:
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S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

Rectified linear unit: in traditional neural networks, sigmoid or tan-

gent hyperbolic activation functions are used to provide the non-linearity

in the network. These activation functions, however, cause the vanishing

gradients problem in backpropagation when the number of hidden layers

increases. The rectified linear unit activation function provides the non-

linearity in the network while it alleviates gradient vanishing problem, thus

provides the possibility to use backpropagation for training very deep net-

works. For a given input x, the rectified linear unit function is defined as

max(0, x).

Pooling layer: pooling operation performs a sub-sampling of the fea-

ture map using a summary statistic such as average or maximum within a

rectangular neighborhood [100]. Max-pooling and average-pooling are the

two commonly used pooling functions. Figure 2.5 provides an illustration

for the 1-D max pooling operation. The pooling operation provides ro-

bustness over shifts and distortions in the input space. The pooling layer

reduces the spatial size of the input space, resulting in the reduction of

the number of parameters, thus, the computational cost of training and

prediction processes.

CNNs provide several advantages over traditional fully-connected neu-

ral networks including the possibility for sparse connectivity, parameter

sharing, and equivariant representation:

Sparse connectivity: unlike the traditional neural networks with fully

connected architecture, where each output unit in a given layer is connected

to all input units of the next layer, CNNs benefit from sparse connectivity

architecture by using convolutional kernels which have a much smaller size

than the data. This property results in reducing the memory requirements
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Figure 2.5: An illustration of the 1-D max pooling functionality on the time-series data.

for storing the parameters and improving the computational efficiency of

the model [100].

Parameter sharing: in fully-connected neural networks, each param-

eter in the weight matrix is used only once when computing the output of

each layer. In contrast, CNNs benefit from parameter sharing where in-

stead of using different kernels for different locations, the same kernel can

be used in all positions throughout the input data. Same as sparse connec-

tivity, parameter sharing is also important in improving the computational

efficiency of the network when dealing with large input spaces [100].

Equivariant representation: a function is considered as equivariant

to a specific transformation if any changes in the input by means of that

transformation causes the equivalent changes in the output. The convo-

lution process is equivariant to translation in the input space. This is a

very important property when dealing with the structured dynamic signal

in space or time.

2.6.2 Long Short-Term Memories

Recurrent neural networks (RNNs) are a class of neural networks for pro-

cessing the sequential data [100]. In general, RNNs benefit from the shar-

ing of parameters through a very deep computational graph, as at each
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Figure 2.6: A schematic illustration of an RNN.

time step t, the subsequent hidden state from the previous state ht−1 and

the input of the current state xt are used to produce the output ot (see

Figure 2.6). RNNs are suitable when dealing with short-term dependen-

cies. In long-term dependencies, however, they suffer from the problem of

vanishing or exploding gradients during the training [100].

In 1997, in order to overcome this problem, Sepp Hochreiter [101] pro-

posed an extension of RNNs called long short-term memories (LSTMs).

LSTMs are able to capture the long-term dependencies and nonlinear dy-

namics by using a forget gate which enables the network to restart its

state [100, 102]. LSTMs are comprised of memory cells that are connected

to each other recurrently [100]. The state of each memory cell is updated

according to the activation of the gates. As it is shown in Figure 2.7, each

memory cell includes four elements: an input gate, a cell state unit, a for-

get gate, and an output gate. The weight of the cell state is controlled by

the forget gate. In the training phase, the forget gate learns how much

of information in the old state should be remained or forgotten. The in-

put gate and output gate control the flow of information into the network.

These mechanisms are more formally explained in Section 4.2. LSTMs

have been successfully applied in a wide variety of applications, such as

machine translation [103], speech recognition [104, 105], and human activ-
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ity recognition [89].

Figure 2.7: A schematic representation of a memory cell in LSTM (the picture from http:

//colah.github.io/posts/2015-08-Understanding-LSTMs).

2.6.3 Autoencoders

Autoencoders are neural networks which are trained to regenerate the input

data in the output. An autoencoder is comprised of two parts: an encoder

f(x) which transforms the large input space to a lower dimensional feature

space (also called latent codes), and a decoder g(f(x)) which reconstructs

the input data from the latent codes in the output. Figure 2.8 shows a

schematic representation of the general architecture of an autoencoder.

Autoencoders are trained to minimize a loss function, L(x, g(f(x)), i.e.,

the error between the actual input and the reconstructed input. Thus,

during training, the network learns a new representation of data from the

reduced latent space. This makes autoencoders successful in unsupervised

feature learning, dimensionality reduction, and information retrieval ap-

plications [106, 107]. Denoising autoencoder is a variation of autoencoder

that aims to learn more robust features by minimizing L(x, g(f(x̃))) where

x̃ is the input data that is corrupted by some noise.

http://colah.github.io/posts/2015-08-Understanding-LSTMs
http://colah.github.io/posts/2015-08-Understanding-LSTMs
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Figure 2.8: A general architecture for an autoencoder.



Chapter 3

Convolutional Neural Networks for

Stereotypical Motor Movement

Detection

3.1 Introduction

As stated in Section 2.1, stereotypical motor movements (SMM) have neg-

ative effects on the quality of life of children with autism. Considering

the negative consequences of abnormal movements on the quality of life

of autistic children and the limitations of existing methods for measuring

This chapter is based on the following publications:

1. Nastaran Mohammadian Rad, et al., “Convolutional neural network for stereotypical motor move-

ment detection in autism.” Accepted in NIPS 5th workshop of machine learning and interpretation

in neuroimaging, 2015.

2. Nastaran Mohammadian Rad, and Cesare Furlanello, “Applying deep learning to stereotypical mo-

tor movement detection in autism spectrum disorders.” Accepted in 16th International Conference

on Data Mining Workshops (ICDMW), 2016.

3. Nastaran Mohammadian Rad, et al., “Deep learning for automatic stereotypical motor movement

detection using wearable sensors in autism spectrum disorders.” Accepted in Signal Processing,

2018.
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Data collection using wearable sensors Data Analysis Monitoring Children

Figure 3.1: A real-time automatic SMM detection system. Inertial Measurement Units

(IMUs) can be used for data collection. The collected data can be analyzed locally or

remotely to detect SMMs. In case of detecting abnormal movements, an alert is sent to

a therapist, caregiver, or parents.

SMMs, it is essential to develop time efficient and accurate methods for

automatic SMM detection. Developing a real-time SMM detection and

quantification system would be advantageous for researchers, caregivers,

families, and therapists. Such a system would provide a powerful tool to

evaluate the adaptation of subjects with autism spectrum disorder (ASD)

to diverse life contexts within an ecologic approach. In particular, it helps

to mitigate the meltdown behaviors that are anticipated by the increase in

atypical behaviors. Any automatic quantification of atypical movements

would indeed help caregivers and teachers to defuse the mechanism lead-

ing to stereotyped behaviors by involving children in specific activities or

social interactions. Such involvement decreases the frequency of SMMs

and gradually alleviates their duration and severity [108, 109]. A real-

time implementation of SMM detection system (see Figure 3.1) would help

therapists to evaluate the efficacy of behavioral interventions.

One of the important challenges for accurate SMM detection is to ex-

tract a set of effective and robust features from the inertial measurement

unit (IMU) signal. As in many other signal processing applications, SMM

detection is commonly based on extracting handcrafted features from the
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IMU signals. So far, a wide variety of feature extraction methods have

been used in the literature. Generally, two main types of features are

extracted from the accelerometer signal [110]: i) time domain features,

ii) frequency domain features. For time domain features, some statisti-

cal features such as mean, standard deviation, zero-crossing, energy, and

correlation are extracted from the overlapping windows of the signal. In

the case of frequency features, the discrete Fourier transform is used to

estimate the power of different frequency bands. In addition, the Stock-

well transform [111] is proposed by [19] for feature extraction from 3-axis

accelerometer signals in order to provide better time-frequency resolution

for non-stationary signals. In spite of their popularity, manual feature ex-

traction and selection suffer from subjectivity and time inefficiency [88]

that restrict the performance and also the application of SMM detection

systems in real-time scenarios.

Another challenge toward developing a real-time SMM detection system

is personalization due to the intra and inter-subject variability [19, 83].

This challenge, despite its crucial importance, has been undervalued [19].

Intra-subject variability is mainly due to the high variability in the inten-

sity, duration, frequency, and topography of SMMs in each individual with

ASD. Inter-subject differences are defined by the same variability across

different individuals. The existence of these two types of variability within

and across ASD persons motivates the necessity of developing an adap-

tive SMM detection algorithm that is capable to adjust to new patterns of

behaviors.

3.1.1 Contribution

In this chapter, we present three main contributions: 1) robust feature

learning from multi-sensor IMU signals; 2) enhancing the adaptability of

SMM detection system to new data via parameter transfer learning. 3)



28 Convolutional Neural Networks for Stereotypical Motor Movement Detection

presenting a simulated dataset for SMM detection purpose using IMU sen-

sors.

To achieve our first goal, we propose a new application of the deep learn-

ing paradigm in order to directly learn discriminating features for detect-

ing SMM patterns. In particular, we use a convolutional neural network

(CNN) [97] to bypass the commonly used feature extraction procedure.

The idea of the CNN is inspired by the visual sensory system of living

creatures [112]. Following this idea, LeCun et al. [113] developed a deep

CNN architecture to address a pattern recognition problem in computer

vision. Having fewer connections and parameters due to the weight sharing

property, CNNs are easier to train compared to other deep neural networks.

Currently, CNN solutions are among the best-performing systems on pat-

tern recognition systems specifically for the handwritten character [113]

and object recognition [114]. Beyond audio and image recognition sys-

tems, CNNs are successfully applied to various types of signals. Mirowski

et al. [115] applied CNN on EEG signals for seizure detection. In the

domain of psychophysiology, for the first time, Martinez et al. [88] pro-

posed a model based on CNN to predict affective states of fun, excitement,

anxiety, and relaxation. Their proposed model was tested on skin con-

ductance and blood volume pulse signals. Recent studies also show the

advantageous of applying CNN on accelerometer signals for human activ-

ity recognition [116, 117, 118].

To fulfill our second goal, we employ the parameter transfer learning

by pre-initializing the parameters of the CNN [119]. We hypothesize that

this capability can be used to transfer the prior knowledge regarding the

distribution of parameters from one dataset to another dataset that are

collected in a longitudinal study. If successful, our method can be employed

in order to enhance the adaptability of the SMM detection system to new

unseen data, thus facilitates its applications in wild real-world scenarios.
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As a third contribution, we present a simulated dataset for SMM de-

tection purpose. The dataset contains a complete 9-axes IMU signal, i.e.,

gyroscope and magnetometer sensor streams are also available in addition

to the accelerometer signal, thus, provides a benchmark for developing

multi-modal SMM detection systems.

Our experimental results on a simulated dataset and two real datasets

show that feature learning via the CNN outperforms handcrafted features

in SMM classification. Furthermore, it is shown that the parameter transfer

learning is beneficial in enhancing the SMM detection rate when moving

to a new dataset.

3.2 Methods

3.2.1 Notation

Let S1,S2, . . . ,Sc ∈ RL be c time-series of length L that are recorded by

a set of IMUs (e.g., accelerometer, gyroscope, and magnetometer sensors)

at the sampling frequency of ν Hz. Thus, T = L/ν represents the length

of the signal in seconds. We refer to each Si as a data channel. Now

consider Xt ∈ Rc×ν for t ∈ {1, 2, . . . , T} as a sample in the raw feature

space that is constructed by concatenating time-series of c data channels

in a given time t. Let yt ∈ {0, 1} be the label associated to Xt where

yt = 1 corresponds to an SMM sample. In this text, we use boldface

capital letters to represent matrices, boldface lowercase letters to represent

vectors, and italic lowercase letters to represent scalars. We represent the

matrix and element-wise multiplication between A and B matrices by A·B
and A � B, respectively. Further, [a,b] represents vector concatenation

operation between a and b vectors.
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3.2.2 Feature Learning via Convolutional Neural Network

The goal of an SMM detector is to predict the probability of being an SMM

for a given sample Xt, i.e., P (yt = 1 | Xt). While the raw feature space

(Xt) is sensitive to intra and inter-subject differences, feature learning can

provide the possibility to learn a new feature space that is robust over

time and across different subjects. The aim of feature learning is to learn a

linear or non-linear mapping function F : Xt 7→ x′t, where x′t ∈ Rd is called

the learned feature space. Then a classifier can be used in the learned

feature space to estimate P (yt = 1 | x′t).
Convolutional Neural Networks (CNNs) offer an effective infrastructure

for feature learning. CNN benefits from invariant local receptive fields,

shared weights, and spatio-temporal sub-sampling features to provide ro-

bustness over shifts and distortions in the input space [97]. A classic CNN

has a hierarchical architecture that alternates convolutional and pooling

layers in order to summarize large input spaces with spatio-temporal re-

lations into a lower dimensional feature space. A 1D-convolutional layer

receives the input signal Xt ∈ Rc×ν, convolves it with a set of f filters with

the length of m, W ∈ Rf×c×m, and produces a feature map Mt ∈ Rf×ν:

Mt = Xt ∗W =


∑c

j=1

∑m
i=1w1,j,i × xj,1+i . . .

∑c
j=1

∑m
i=1w1,j,i × xj,ν+i∑c

j=1

∑m
i=1w2,j,i × xj,1+i . . .

∑c
j=1

∑m
i=1w2,j,i × xj,ν+i

...
...

...∑c
j=1

∑m
i=1wf,j,i × xj,1+i . . .

∑c
j=1

∑m
i=1wf,j,i × xj,ν+i

 (3.1)

where ∗ represents the convolution operator. The feature map is then fed

to an activation function, generally the rectified linear unit (ReLU), to

add non-linearity to the network and also to avoid the gradient vanishing

problem [100], where:

M+
t = max(0f×ν,Mt). (3.2)
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Here max(., .) represents the element-wise max operation. Finally, in

order to reduce the sensitivity of the output to shifts and distortions, M+
t

is passed through a pooling layer which performs a local averaging or sub-

sampling over a pooling window with size of p elements and calculates

the reduced feature map M′
t ∈ Rf× νu . In fact, a pooling layer reduces the

resolution of a feature map by factor of 1
u where u is the stride (or step)

size. Max-pooling and average-pooling are two commonly used pooling

functions which compute the maximum or average value among the values

in a pooling window, respectively. In average-pooling for m′i,j ∈ M′
t, i ∈

{1, . . . , f}, and j ∈ {1, . . . , νu}, we have:

m′i,j =
1

p

p∑
k=1

mi,(j−1)×u+k. (3.3)

Alternatively, in the max-pooling each element of the reduced feature

map is the maximum value in a corresponding pooling window:

m′i,j = max(mi,(j−1)×u+1,mi,(j−1)×u+2, . . . ,mi,(j−1)×u+p). (3.4)

The reduced feature map M′
t can be used as the input to the next

convolutional layer, i.e., Xt of the next layer. In general, the reduced

feature map computed by stacking several convolutions, ReLU, and pooling

layers is flattened as a vector before the classification step. The flattening

step is performed by collapsing the rows of M′
t in the form of a vector.

The resulting vector is called the learned feature space x′t that represents a

new representation of the original feature space. This new representation

is typically fed to a fully connected neural network followed by a softmax

layer for the classification purposes.

In this study, and for the purpose of SMM detection on the multi-sensor

IMU data, we propose to use a three-layer CNN to transform the time-series

of multiple sensors to a new feature space. The proposed architecture is

shown in Figure 3.2. Three convolutional layers are designed to have 4, 4,
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and 8 filters with the length of 9 samples (i.e., 0.1 seconds), respectively.

The length of the pooling window and pooling stride are fixed to 3 (p = 3)

and 2 (u = 2), respectively. The pooling stride of 2 reduces the length of

feature maps by the factor of 0.5 after each pooling layer. The output of the

third convolutional layer after flattening provides the learned feature vec-

tor. Then, the learned feature vector is fed to a two-layer fully-connected

network with 8 and 2 neurons that are connected to a softmax layer. A

dropout [120] rate of 0.5 is used in the fully connected layers to avoid the

overfitting problem. Since only the information in Xt is used to compute

x′t and then predict yt, we refer to the learned feature space via this CNN

architecture as the static feature space. In fact, we do not consider the in-

formation in the consecutive time intervals as we assume that the sequence

of samples over time are independent and identically distributed (i.i.d).

3.2.3 Parameter Transfer Learning via Network Pre-initialization

The quality and characteristics of recorded IMU signals vary not only from

subject to subject but also from time to time in a single subject. Therefore

it is important for the SMM detector system to adapt to new streams of

signals in longitudinal scenarios. In this study, we explore the possibility

of parameter transfer learning via network pre-initialization in order to

transfer the learned patterns to the newly seen data in a different time span.

In this direction, we first formalize the background theoretical concepts.

In the statistical learning theory, the goal is to learn a task T in a certain

domain D. A domain D = {X , ρX} is defined as a possible conjunction

between an input space X and a marginal probability distribution ρX . For

example in the SMM detection context, the recorded IMU signal for differ-

ent subjects can be considered as different domains as the marginal prob-

ability distribution ρX is different from one subject to another. Similarly,

different domains can be defined by time in longitudinal data collection
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Figure 3.2: (a) The proposed architecture for SMM detection in the static feature space

using a three-layer CNN. (b) The first CNN layer. This layer receives the one-second

long time-series of several IMU sensors at time t, i.e., Xt, and transfer it to the first level

reduced feature map M′
t. (c) The second CNN layer that uses the first level reduced

feature map M′
t as its input, and transfer it to the second-level reduced feature map. (d)

The third CNN layer. The reduced feature map of this layer is reshaped to the learned

feature vector x′t using the flattening operation. (e) The learned feature vector is fed to a

fully-connected followed by a softmax layer to classify the samples to SMM and no-SMM

classes.

scenarios. Given a domain D, a task T = {Y ,Φ} is defined as a predictive

function Φ from D to the output space Y . For example, in this study, Φ is

the SMM detector, and Y represents the categorical output space of SMM

and no-SMM samples. Assume DS, DT , TS, and TT to represent the source

domain, target domain, source task, and target task, respectively. Trans-

fer learning aims to benefit from the knowledge in the source domain and
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task in order to improve the predictive power in the target domain when

DS 6= DT or TS 6= TT [121].

In this study, we are interested in the application of parameter transfer

learning via pre-initializing the parameters of a deep neural network, as a

well-established technique in the deep learning community, to improve the

SMM prediction performance across different subjects and time intervals.

To this end, we define the source domain DS as the IMU signal which is

collected on several subjects at the time span T1. Similarly, the target

domain DT is defined as the IMU signal which is collected on several sub-

jects at the time span T2. Assume ΦS be the learned predictive function,

i.e., the CNN classifier, in the source domain. We use the learned parame-

ters in ΦS to pre-initialize the parameters of the predictive function in the

target domain ΦT . In simpler words, instead of random pre-initialization,

we initialize the parameters of CNN classifier in the target domain with

the learned CNN parameters in the source domain. We hypothesize that

such a knowledge transfer via learned parameters improves the prediction

performance in the longitudinal studies where the data are collected at

different time intervals.

3.2.4 Experimental Materials

We assess the performance of the proposed methods on both simulated and

real data. In the following, we describe the datasets and the procedures

that are used for data preparation.

Simulated Data

In a simulation setting, 5 healthy subjects (3 females and 2 males) are asked

to emulate stereotypical movements in a controlled environment. Each par-
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ticipant wore an EXLs3 sensor1, a miniaturized electronic device with the

function of real-time IMU, fixed on the right wrist using a wristband (see

Figure 3.3(a)). The EXLs3 sensor records three-axis accelerometer, gy-

roscope, and magnetometer data (it has 9 data channels in total). The

sensor was set to transmit three-axis ±16 g acceleration and ±2000 dps

angular velocity at the 100 Hz sampling rate. The participants were in-

structed to perform their normal working activities in the office such as

sitting, writing, and typing; while intermittently performing hand flapping

upon receiving a start/stop cue from the instructor (see Figure 3.3(b)-(e)).

The total period of SMMs is organized somehow to keep the distribution

of two classes comparable with real datasets where 27% of samples are in

the SMM class (see Table 3.1). The total duration of each experiment

was 30 minutes organized in three 10 minutes sessions. Real-time coding

is undertaken during sessions to annotate the starting and ending time

of movements. The captured data were band-pass filtered with a cut-off

frequency of 0.1 Hz to remove the direct current (DC) components. Then

the signal was segmented to 1 second long (i.e., 100 time-points) using a

sliding window. The sliding window was moved along the time dimension

with 10 time-steps resulting in 0.9 overlaps between consecutive windows 2.

1For the technical description see: http://www.exelmicroel.com/elettronica_

medicale-tecnologia-indossabile-exl-s3_module.html.
2The collected simulated data is made publicly available at https://gitlab.fbk.eu/MPBA/

smm-detection.

http://www.exelmicroel.com/elettronica_medicale-tecnologia-indossabile-exl-s3_module.html
http://www.exelmicroel.com/elettronica_medicale-tecnologia-indossabile-exl-s3_module.html
https://gitlab.fbk.eu/MPBA/smm-detection
https://gitlab.fbk.eu/MPBA/smm-detection
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Figure 3.3: (a) The configuration of the EXLs3 sensor on the right hand. (b),(c) The

simulated data are collected during daily work activities in the office (e.g., sitting, writing,

and typing). (d),(e) The subjects are asked to intermittently perform hand flapping upon

receiving a start/stop cue from the instructor.

Real Data

We use the data presented in [19] wherein the accelerometer data were

collected from 6 subjects with autism in a longitudinal study3. As stated

in [19], the aim of data collection in a longitudinal scenario was to inves-

tigate whether a previously trained classifier can accurately detect SMMs

over time. The data were collected in the laboratory and classroom envi-

ronments while the subjects wore three 3-axis wireless accelerometers and

engaged in body rocking, hand flapping, or simultaneous body rocking and

hand flapping. The accelerometer sensors were attached to the left and

right wrists, and on the torso. Offline annotation based on a recorded

video is used to annotate the data by an expert. Two separate collections

are available: the first collection, here we call it SMM-1, was recorded

by MITes sensors [122] at 60 Hz sampling frequency [123]. The second

collection SMM-2, was recorded three years after the first recording on

the same subjects using Wockets sensors with the sampling frequency of

90 Hz. In the preprocessing step, first, the sampling rate of two recordings

is equalized by re-sampling the signal in SMM-1 to 90 Hz using linear

3The dataset and full description of data are publicly available at https://bitbucket.org/

mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads.

https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads
https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads
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interpolation. The cut-off high pass filter at 0.1 Hz is applied in order

to remove the DC components of the signal. Similar to [19], the signal is

segmented to 1-second long overlapped intervals using a sliding window.

Then similar to [19], amount of overlap is set to 10 time-points resulting

in 0.87 overlap between consecutive windows. Table 3.1 summarizes the

number of samples in no-SMM and SMM classes for each subject. The dif-

ference in the number of samples in SMM and no-SMM classes shows the

unbalanced nature of the real data, wherein SMM-1 and SMM-2 datasets

31% and 23% of samples are in the SMM class, respectively.

Table 3.1: Number of samples in SMM and no-SMM classes in three datasets.

Data Subjects No-SMM SMM All SMM/All

Simulated Data

Sub1 13875 4075 17950 0.23

Sub2 11686 6224 17910 0.35

Sub3 13694 4246 17940 0.24

Sub4 12428 5532 17960 0.31

Sub5 13583 4367 17950 0.24

Total 65266 24444 89710 0.27

SMM-1 [19]

Sub1 21292 5663 26955 0.21

Sub2 12763 4372 17135 0.26

Sub3 31780 2855 34635 0.08

Sub4 10571 10243 20814 0.49

Sub5 17782 6173 23955 0.26

Sub6 12207 17725 29932 0.59

Total 106395 47031 153426 0.31

SMM-2 [19]

Sub1 18729 11656 30385 0.38

Sub2 22611 4804 27415 0.18

Sub3 40557 268 40825 0.01

Sub4 38796 8176 46972 0.17

Sub5 22896 6728 29624 0.23

Sub6 2375 11178 13553 0.82

Total 145964 42810 188774 0.23

3.2.5 Experimental Setups and Evaluation

To investigate the effect of static feature learning and parameter transfer

learning on the performance of SMM detection when balanced and unbal-

anced data is used in the training set, we conducted three experiments.
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Keras library [124] is used in our implementations4.

Experiment 1: Static Feature Learning

The main aim of this experiment is to compare the effectiveness of feature

learning using a deep neural network versus raw feature space and hand-

crafted features in an across-subject SMM detection setting. To evaluate

the effect of both feature extraction and feature learning on the SMM clas-

sification performance, first, without any feature extraction the signals in

the raw feature space are used as the input to a support vector machine

(SVM) classifier. In this case, all data channels of each sample Xt are

collapsed into a feature vector (with length of 900 = 9 × 100 Hz in sim-

ulated data and 810 = 9 × 90 Hz in real datasets, where 9 is the number

of data channels). Second, to evaluate the detection performance using

handcrafted features we extracted all features mentioned in [19] includ-

ing time, frequency, and Stockwell transform features, then, we replicated

the across-subject SMM detection experiment in [19]. In this setting, we

used exactly the same implementation provided by the authors 5 in the

feature extraction and classification steps. Third, a CNN architecture (see

Section 3.2.2) is used to learn an intermediate representation of the multi-

sensor signal. In this experiment, all effective parameters of CNN (weights

and biases) are initialized by drawing small random numbers from the nor-

mal distribution. The stochastic gradient descent with momentum (the

momentum is fixed to 0.9) is used for training the network. All these steps

are performed only on the training data to ensure unbiased error estima-

tion. Due to the random initialization of weights and employing stochastic

gradient descent algorithm for optimization, results can be different from

one training run to another. Therefore, we repeated the whole procedure

4See https://gitlab.fbk.eu/MPBA/smm-detection to access the implemented scripts and codes.
5The code is available at: https://bitbucket.org/mhealthresearchgroup/

stereotypypublicdataset-sourcecodes/downloads.

https://gitlab.fbk.eu/MPBA/smm-detection
https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads
https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads
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of learning and classification 10 times and the mean and standard variation

over runs are reported. It is important to emphasize that, similar to [19],

in all three parts of this experiment the number of samples in the minority

class is used to randomly draw a balanced training set.

Experiment 2: Parameter Transfer Learning

As discussed before, deep neural networks provide the capability of pa-

rameter transfer learning via network pre-initialization. We applied this

experiment only on two real datasets in order to investigate the possibility

of transferring learned knowledge from one dataset to another in a longitu-

dinal data collection setting. This experiment is similar to Experiment 1,

except for the network initialization step. Instead of random initialization,

here we first train the CNN on one balanced real dataset, e.g., SMM-1,

and then we use the learned parameters for pre-initializing the parameters

of CNN before training on another balanced real dataset, e.g., SMM-2.

Similar to the previous experiment, we repeated the whole experiment 10

times to compute the standard deviation of the classification performance.

Experiment 3: Training on the Unbalanced Training Set

As explained, in Experiment 1 and 2, we balanced the training set based

on the number of samples in the minority class. Even though balancing

the training set improves the quality of the trained model, in fact, it suffers

from some deficits: 1) by balancing the training set we impose a wrong prior

assumption on the original distribution of data. As shown in Table 3.1

in real datasets around 0.3 of samples belong to SMM class, when by

balancing the dataset we assume it is 0.5; 2) by balancing the training set

we cannot employ the full richness of the data as we need to remove the

significant amount of samples from the training set; 3) in some practical

scenarios, such as real-time adaptation or classification on the sequence of
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streamed data, balancing the training set is impractical. Considering these

limitations, in this experiment in order to evaluate the effect of balancing

on the performance of CNN model we evaluate the performance of the

proposed CNN architecture in predicting SMMs when unbalanced training

sets are used in the training phase.

Evaluation

In all experiments, the leave-one-subject-out scheme 6 is used for model

evaluation in order to measure the robustness of the trained model against

inter-subject variability. Due to the unbalanced class distributions in the

test set, we computed the F1-score to evaluate the classification perfor-

mance.

3.3 Results

3.3.1 Feature Learning Outperforms Handcrafted Features

The classification performances summarized in Table 3.2 compare the qual-

ity of feature learning via CNN with raw and handcrafted feature spaces

on three datasets. For all three datasets, the classification performance of

SMM detection on the handcrafted and learned features is higher than the

classification performance on the raw feature space. This result demon-

strates the importance of developing feature extraction/learning methods

for detecting SMMs. Furthermore, the comparison between the results

achieved by handcrafted and learned features illustrates the efficacy of fea-

ture learning over the manual feature extraction in SMM prediction. The

learned feature space reaches on average 10% and 20% higher F1-score than

6Using the leave-one-subject-out cross-validation prevents the risk of overfitting as in this case all

samples of all subjects except one subject have been used for training the model and then the trained

model is evaluated on the samples of the remained subject.
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the handcrafted features in case of simulated data and SMM-1, respectively,

while in case of SMM-2 its performance declines by 5%. These results sup-

port the overall efficacy of feature learning versus handcrafted features in

extracting robust features for across-subject SMM detection. In order to

further confirm these findings, the different feature spaces were analyzed

by projecting in a 2-dimensional space with the t-distributed Stochastic

Neighbor Embedding (t-SNE) [125] technique (see Figure 3.4(a)-(c)). We

used the average of Fisher’s separability score [126] across two t-SNE di-

mensions to quantify the separability of samples in two classes for different

feature spaces. Figure 3.4(a) shows 2D t-SNE distribution of SMM and

no-SMM samples in the raw feature space, where there is a high overlap

between the samples of two classes. This high overlap is also well-reflected

in the low Fisher’s separability score in raw feature space (0.02). Fig-

ure 3.4(b) depicts the distribution of samples of two classes in handcrafted

feature space. The samples in two classes are barely separable and the

Fisher’s separability score is 0.03. Figure 3.4(c) displays the 2D t-SNE

space for the learned features via the CNN architecture. In this case, the

separability score is improved significantly to 0.10.

3.3.2 Parameter Transfer Learning is Beneficial in Longitudinal

Studies

As mentioned in Section 3.2.5, the aim of our second experiment was to in-

vestigate the possibility of transferring learned knowledge from one dataset

to another using parameter transfer learning. Our results in Table 3.2

shows that transferring knowledge from one dataset to another in a longi-

tudinal study, by pre-initializing the parameters of CNN model improves

the average classification performance of the SMM detectors by 4% and

21% in SMM-1 and SMM-2 datasets, respectively.
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Figure 3.4: The distribution of SMM and no-SMM samples in the 2-dimensional t-SNE

space for (a) raw feature space, (b) handcrafted features, (c) static feature space learned

by CNN, and (d) static feature space learned by pre-initialized CNN. Feature learning

increases the separability of samples in two classes compared to raw and handcrafted

features.

3.3.3 Training on Unbalanced Data Decreases the Performance

The results in Table 3.2 illustrate the importance of balancing classes dur-

ing training. Indeed a negative effect is observed when unbalanced training

set is used in training CNN architecture in randomly initialized (feature

learning) and pre-initialized (transfer learning) scenarios. The performance

of SMM detection in feature learning scenario drops by 6% and 3% in SMM-

1 and SMM-2 datasets, respectively. This performance drop is even more

pronounced in the transfer learning scenario where we observe 8% and 20%

performance drop in F1-score in the corresponding datasets.

In all experiments, we also observed very low performance for subject 3

in SMM-2 dataset which can be explained by the fact that for this subject

the distribution of samples in SMM and no-SMM classes is highly skewed

(see Table 3.1).



3.4. Discussion 43

3.4 Discussion

3.4.1 Toward Real-Time Automatic SMM Detection

Developing real-time mobile applications for detecting abnormal move-

ments such as SMMs can be considered as the final goal in the context

of automatic SMM detection using wearable sensors. At the moment

there are numerous challenges in real-time human activity recognition us-

Table 3.2: F1-score results for SMM detection using raw, handcrafted, and static feature

spaces in three benchmarked datasets. The results show that feature learning (here re-

ferred to as Static-Features) generally outperforms raw and handcrafted feature spaces.

In addition, the parameter transfer learning has a positive effect on the performance of

the CNN classifier. Furthermore, training the CNN classifier on unbalanced training sets

causes the performance drop in feature learning and transfer learning scenarios.

Data
Balanced-training Unbalanced-training

Sub
Raw

Features

Handcrafted

Features

Static-Feature

Learning

Transfer

Learning

Static-Feature

Learning

Transfer

Learning

S
im

u
la

te
d

1 0.29 0.71 0.78± 0.05 - 0.73± 0.13 -

2 0.84 0.86 0.86± 0.03 - 0.78± 0.09 -

3 0.55 0.76 0.80± 0.01 - 0.75± 0.13 -

4 0.76 0.48 0.85± 0.03 - 0.73± 0.12 -

5 0.38 0.77 0.79± 0.01 - 0.80± 0.04 -

Mean 0.56 0.72 0.82 ± 0.03 - 0.76± 0.11 -

S
M

M
-1

1 0.44 0.74 0.74± 0.02 0.71± 0.02 0.70± 0.02 0.71± 0.03

2 0.32 0.37 0.75± 0.02 0.73± 0.01 0.63± 0.03 0.63± 0.04

3 0.22 0.50 0.68± 0.04 0.70± 0.03 0.57± 0.08 0.59± 0.06

4 0.44 0.73 0.92± 0.01 0.92± 0.00 0.88± 0.01 0.88± 0.01

5 0.56 0.44 0.51± 0.04 0.68± 0.05 0.51± 0.08 0.58± 0.07

6 0.56 0.46 0.90± 0.01 0.94± 0.01 0.79± 0.07 0.81± 0.09

Mean 0.42 0.54 0.74± 0.03 0.78 ± 0.03 0.68± 0.06 0.70± 0.06

S
M

M
-2

1 0.47 0.43 0.61± 0.11 0.68± 0.05 0.33± 0.14 0.36± 0.08

2 0.23 0.26 0.20± 0.04 0.22± 0.04 0.11± 0.03 0.16± 0.04

3 0.01 0.03 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.01

4 0.32 0.86 0.72± 0.03 0.77± 0.02 0.71± 0.14 0.83± 0.03

5 0.38 0.73 0.21± 0.09 0.75± 0.09 0.14± 0.09 0.09± 0.02

6 0.50 0.07 0.36± 0.13 0.91± 0.05 0.62± 0.08 0.70± 0.16

Mean 0.32 0.40 0.35± 0.08 0.56 ± 0.05 0.32± 0.1 0.36± 0.08
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ing wearable sensors, namely [127, 128, 129]: 1) designing effective feature

extraction and inference methods; 2) recognition on realistic data; 3) the

adaptability of the system to new users. Addressing these issues demands

a huge investment in research toward finding robust and effective features

that can be extracted in a reasonable time from the stream of the IMU

signal. Our proposal to learn an intermediate representation of the signal,

that is robust to the signal variability of a single subject data over time

and also to the across-subject variability, can be considered as an effective

solution in this direction. In addition, the parameter transfer learning ca-

pability besides the possibility of incremental training (i.e., the continual

training and extending the model’s knowledge) of the proposed deep ar-

chitecture facilitates the online adaptation of an automatic SMM detector

in real-time scenarios. This finding overlooks the subject specific [130],

and monolithic [131, 83] activity recognition systems, thus opening new

frontiers toward adaptable activity recognition systems which are more

appropriate for real-time usages.

3.4.2 Limitation and Future Work

Even though the deep architecture introduced in this study provides a sig-

nificant step toward a more accurate automatic SMM detection system in

real-time scenarios, it suffers from a considerable limitation: the proposed

fully supervised scheme for training the SMM detection model is problem-

atic for its online adaptation. This problem comes from the fact that in

real applications the system has no access to the labels of incoming sam-

ples during usage by a new user. Therefore, the adaptation to new unseen

data should be performed only based on the input unlabeled data. This

limitation motivates the study of methods for online adaptation of the sys-

tem in an unsupervised manner. One possible solution in this direction

is transductive transfer learning [121] where the basic assumption is that
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no labeled data in the target domain are available. Therefore adopting

a transductive transfer learning strategy in the adaptation phase can be

considered as a possible future direction to extend this work.

3.5 Conclusions

In this study, we proposed an original application of deep learning for SMM

detection in ASD children using the accelerometer, and in general IMU,

sensors. To the best of our knowledge, this is the first effort toward apply-

ing deep learning paradigm for detecting SMMs. Our experimental results

showed that convolutional neural networks outperform the traditional clas-

sification on the handcrafted features. This observation supports our initial

hypotheses about the effectiveness of embedded feature learning and trans-

fer learning capabilities of deep neural networks in providing more accurate

SMM detection systems. This study is an early effort toward developing

a real-time SMM detector. Such a system can be embedded in a mobile-

based application to provide the possibility of ubiquitous SMM detection.
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Chapter 4

Stereotypical Motor Movement

Detection in Dynamic Feature Space

4.1 Introduction

In Chapter 3, we proposed a convolutional neural network (CNN) archi-

tecture [97] in order to directly learn discriminating features for detect-

ing stereotypical motor movements (SMM) in inertial measurement unit

(IMU) data collected from children with autism. In fact, the CNN archi-

tecture was used to transform the multi-channel IMU signal to a reduced

set of discriminative features. It was shown that the proposed CNN with

the feature learning and transfer learning capabilities provides more ac-

curate SMM detectors than manual feature extraction methods. Despite

This chapter is based on the following publications:

1. Nastaran Mohammadian Rad, et al., “Stereotypical motor movement detection in dynamic feature

space.” Accepted in 16th International Conference on Data Mining Workshops (ICDMW), 2016.

2. Nastaran Mohammadian Rad, et al., “Deep learning for automatic stereotypical motor movement

detection using wearable sensors in autism spectrum disorders.” Accepted in Signal Processing,

2018.
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the superior classification performance, the CNN architecture proposed in

Chapter 3 did not consider the temporally structured information from the

IMU signal sequences. This is a general issue in SMM detection, in which

individual segments of movement data in terms of IMU signals are treated

as statistically independent samples. Therefore, the possible long-term de-

pendencies stored in the longer time intervals of the signal are ignored in

the detection process while by the definition, SMMs are repetitive move-

ments. Thus, temporal patterns stored in the sequence of samples are

expected to contain valuable information for SMM detection.

4.1.1 Contribution

In this chapter, we propose a deep architecture, by stacking a long short-

term memory (LSTM) [101] layer on top of the CNN architecture proposed

in Chapter 3, in order to learn the dynamic feature space on the sequence of

IMU data. Furthermore, we employ an ensemble of the best base LSTMs to

improve the accuracy and stability of results. LSTM as a type of recurrent

neural networks (RNN) has been effectively used for learning long-term

temporal dependencies in sequential data such as speech recognition [132],

handwriting recognition [133], and natural language modeling [134]. It is

shown that LSTM has been successfully used for human activity recogni-

tion as a classical sequence analysis problem. Ordonez and Roggen [89]

applied the deep architecture, by combining CNN with LSTM network,

on the human activity recognition problem. Their experimental results

demonstrated a significant improvement upon the state-of-the-art. Else-

where, Hammerla et al. [90] applied a different type of deep learning algo-

rithms including CNN and forward/bi-directional LSTMs on three public

human activity datasets captured by wireless sensors. Their experimen-

tal results showed the superiority of LSTMs on the activities with natural

ordering in short time periods. Considering these studies in human activ-
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ity recognition, it is expected that learning the temporal patterns stored

in the consecutive samples of IMU data to provide higher accurate SMM

detectors.

Our experimental results on one simulated dataset and two real datasets

show that including the dynamics of recorded data improves the classifica-

tion performance. We experimentally demonstrate the superiority of the

proposed architecture over the CNN model presented in Chapter 3, when

an unbalanced training set is used in the training phase. Our results show

that the false-alarm rate is indeed reduced by inducing the right prior dis-

tribution into the classification task. This finding gives the possibility of

employing the whole training set in the training phase by removing the

need for balancing the number of samples in two classes, thus, facilitates

the application of SMM detection systems in real-time scenarios.

4.2 Methods

Here, we use the notation presented in 3.2.1 and Figure 2.7 to explain the

definition and concepts about LSTMs.

4.2.1 SMM Detection via LSTM

In the context of SMM detection using wearable sensors, the aim is to

predict the probability of being an SMM for a given sample Xt, i.e., P (yt =

1 | Xt). Since only the information in Xt is used to predict yt, we refer to

this kind of detector as a static detector (see Section 3.2.2). By detecting

SMMs using a static detector, it is implicitly assumed that the sequence

of samples over time are independent and identically distributed (i.i.d).

But in reality, this assumption is not valid as the samples in consecutive

time steps are highly dependent. Therefore, it is expected that accounting

for this dependency would improve the performance of the SMM detector.
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Following this hypothesis, we propose to use a long short-term memory

(LSTM) layer to model the temporal dependency between the consecutive

time steps of the recorded signal.

Let x′t be a set of static features that are extracted or learned from

samples in the raw feature space (i.e., from Xt). Here we assume the CNN

architecture explained in Section 3.2.2 is used to compute x′t. Then, let

ct ∈ Rq and ht ∈ Rq to represent the cell state and output of an LSTM

unit at time step t, respectively, where q is the number of neurons in the

LSTM unit. We will refer to ht as the dynamic feature space. The LSTM

unit receives x′t, ht−1, and ct−1 as its inputs, and computes ct and ht as

follows:

ct = ft � ct−1 + it � c̃t, (4.1)

ht = ot � (1− e−2×ct)� (1 + e−2×ct)−1. (4.2)

Here ft ∈ Rq is called the forget gate vector and its elements are real

numbers between 0 and 1 that decide how much information to be passed

from ct−1 to ct. During the learning phase, the forget gate learns the forget

weight matrix Wf and the forget bias vector bf. ft is computed by

ft = (1 + e−(Wf·[ht−1,x′t]+bf))−1. (4.3)

Using a tangent hyperbolic function, c̃t ∈ Rq provides new candidate

values between −1 and 1 for ct by learning Wc and bc:

c̃t = (1− e−2×(Wc·[ht−1,x′t]+bc))� (1 + e−2×(Wc·[ht−1,x′t]+bc))−1, (4.4)

where it ∈ Rq is the input gate vector with elements between 0 and 1.

These values determine the level of new information in c̃t to be transferred

to the cell state ct. it is computed based on Wi and bi as follows:

it = (1 + e−(Wi·[ht−1,x′t]+bi))−1. (4.5)
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Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Classification

Long Short-Term Memory

Time

Figure 4.1: The proposed architecture for SMM detection in the dynamic feature space

using a long short-term memory. Each feature extraction block contains a trained three-

layer CNN architecture (see Figure 3.2). Each of S1,S2, . . . ,Sk refer to a raw data channel.

Finally, ot ∈ Rq is the output gate vector that filters the cell state ct to

generate the output of the LSTM unit ht:

ot = (1 + e−(Wo·[ht−1,x′t]+bo))−1. (4.6)

In this study, a fully-connected layer with dropout of 0.2 is used to

transfer the output of the LSTM layer at time t, i.e., ht, to the input of

the softmax layer zt = [z
(0)
t , z

(1)
t ]T ∈ R2:

P (yt = 1 | xt−τ ,xt−τ+1, . . . ,xt) =
ez

(1)
t

ez
(0)
t + ez

(1)
t

, (4.7)

where τ represents the number of previous time steps that are used as the

input to the LSTM layer. Figure 4.1 presents a schematic overview of the

proposed architecture.



52 Stereotypical Motor Movement Detection in Dynamic Feature Space

4.2.2 Ensemble of the Best Base Learners

Due to the random initialization and using stochastic optimization algo-

rithms on random mini-batches in training deep learning models, retraining

the same model on the same training set results in heterogeneous approx-

imations of the target classifier. This heterogeneity is the direct result

of reaching different local optima in optimizing a complex non-convex er-

ror surface. One possible approach to overcome this problem is ensemble

learning (EL) [135]. The main idea behind EL is to combine the knowl-

edge learned by individual classifiers in order to achieve superior and sta-

ble performance. It is shown that in general, an ensemble of classifiers

works better than every single classifier due to the statistical, computa-

tional, and representational reasons [136]. Considering the success of deep

learning ensembles in pattern recognition and signal processing applica-

tions [137, 138, 7, 139], in this study we are interested in applying classifier

selection voting approach [140] to combine an ensemble of the best base

learners.

Let (Xtr,ytr) and (Xts,yts) to be the corresponding sample/target pairs

in the training and test sets, respectively. Then assume C = {c1, c2, . . . cl}
be a set of l base learners trained on the training set. Our goal is to first

find a set of b best classifiers C∗ ⊆ C based on a performance measure α

on the training set, and then to combine their prediction on the test set

using majority voting in the prediction phase. Algorithm 1 summarizes

this approach.

4.2.3 Experimental Materials

Data and Preprocessing

We evaluate the performance of the proposed methods on both simulated

and real data described in Section 3.2.4.
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Algorithm 1 The training and test procedures in the majority voting on a set of b best

models.
1: procedure training(C,Xtr,ytr)

2: for all ci ∈ C do

3: Predict ŷ using ci on Xtr.

4: Evaluate ŷ and store the performance in αi.
end

5: for i← 1, l do

6: Store the best i classifiers in C∗i .

7: Predict ŷ1, . . . , ŷi using classifiers in C∗i on Xtr.

8: Compute majority voting ỹ on predictions in ŷ1, . . . , ŷi.

9: Evaluate ỹ and store the performance in αi.
end

10: Find the best value for b by b = argmaxi(αi).

11: return C∗b .

12:
13: procedure test(C∗b ,Xts, yts)

14: Predict ŷ1, . . . , ŷb using classifiers in C∗b on Xts.

15: Compute majority voting ỹ on predictions in ŷ1, . . . , ŷb.

16: Evaluate ỹ and store the performance in α.

17: return α.

4.2.4 Experimental Setup

Experiment 1: Dynamic Feature Learning

In this experiment, we are interested in answering three main questions:

1) what are the advantages of learning the temporal representation of IMU

signals for reliable SMM detection? 2) how long is the most informative

time interval in IMU signals for detecting abnormal movements? 3) what is

the optimal configuration for the LSTM unit? To answer these questions,

we applied the proposed LSTM architecture in Section 4.2.1 on the three

benchmark datasets with different values for τ and q, i.e., time steps and

neuron number, respectively. We set τ = {1, 3, 5, 10, 15, 25, 50} and q =

{5, 10, 20, 30, 40, 50}. The LSTM unit is trained on the extracted features

by the CNN using the RMSProp [141] optimizer. The learned dynamic

features via LSTM (ht) are classified to target classes using a softmax

classifier. It is worthwhile to emphasize that, in this setting, since the

order of samples in the training set matters, balancing the training set is

impossible, thus we use the original unbalanced data.
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Experiment 2: Ensemble of LSTMs

To explore the possible advantage of combining multiple classifiers, we used

the procedure explained in Section 4.2.2 in order to combine a set of b best

base learners. In this experiment, we used the LSTM models in Experiment

1 as base learners for the classification of unbalanced data. We set l = 10

and used the F1-score for the performance metric α in Algorithm 1. The

experiment is repeated 10 times to evaluate the standard deviation over

the mean prediction performance.

Evaluation

In all experiments, the leave-one-subject-out scheme was used for the model

evaluation. For training the ensemble model, we used the same configura-

tions for the LSTM models by fixing τ = 25 as the best length for the time

intervals and q = 40. Due to highly unbalanced classes, the evaluation is

performed by computing F1-scores. We compare our results with the CNN

results presented in Section 3.3 as the-state-of the-art solutions for SMM

detection. Keras library [124] was used in our implementations, and all

experiments were run on a GPU device (4x Nvidia Tesla K80).

4.3 Results

4.3.1 Dynamic Feature Learning Outperforms Static Feature

Learning

Figure 4.2 compares the averaged SMM classification performance over

subjects in the static feature space via the CNN (the green dashed line

for plain feature learning) with the dynamic feature space via the LSTM,

the latter with different values for τ (x-axis) and q (line colors). Here in

all settings, an unbalanced training set is used in the training phase. The
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Figure 4.2: Comparison between the classification performances of CNN and LSTM for

different time-steps (τ) and the number of neurons q, on three datasets and when an

unbalanced training set is used for training the networks. The results show the superiority

of the dynamic feature space over the static feature space. While the number of neurons

in the LSTM unit has little effect on the performance, using around 2.5 seconds long

interval is the best choice for extracting effective dynamic features from the IMU signals.

results on three datasets illustrate that learning the temporal representa-

tion of signals with an LSTM unit, consistently across datasets, improves

the classification performance compared to the static feature learning via

the CNN. The classification performance improves by increasing τ , and it

reaches its highest performance around τ = 25. Considering the consis-

tency of the best τ value for different subjects and different datasets, it

can be concluded that using around 25 time-steps, i.e., around 2.5 seconds

long interval, for extracting dynamic features is the best choice for SMM

detection purposes. On the other hand, the results show the negligible

effect of the number of LSTM neurons (q) on the detection performance,

thus, a value around 10 can be considered a reasonable choice.
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To further benchmark the advantage of dynamic feature learning via

LSTM, we used the CNN architecture for the SMM detection on the best

length for the time intervals, i.e., on 2.5 seconds time intervals. The re-

sults on the three datasets are summarized in Table 4.1 and Figure 4.2

(the dotted red line). The results confirm the superiority of dynamic fea-

ture learning compared to static feature learning despite using longer time

intervals for learning static features.

Figure 4.3: The distribution of SMM and no-SMM samples in the 2-dimensional t-SNE

space for a) a raw feature space (xt), b) static feature space computed by CNN (x′t), and

c) dynamic feature space computed by LSTM (ht).

To further investigate the effect of learning the temporal representation

on the separability of SMM and no-SMM samples, we employ t-distributed

Stochastic Neighbor Embedding (t-SNE) [125] technique to visualize the

different feature spaces in the 2-dimensional space. Then, we use the av-

erage of Fisher’s separability score [126] across two t-SNE dimensions to

assess the separability of classes. The effect of learning the temporal rep-

resentation on the separability of SMM and no-SMM samples is shown in

Figure 4.3(b). The higher Fisher’s separability score (0.17) in the dynamic

feature space compared to static feature spaces (0.1) can be considered as

the basis for the higher classification performance of the proposed archi-

tecture, demonstrating the importance of learning dynamic features using
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an LSTM based architecture.

Table 4.1 also compares the classification performance of different meth-

ods for balanced and unbalanced training sets. To facilitate comparison,

here, we only present the LSTM results for τ = 25 and q = 40. The

comparison between mean classification performances over subjects shows

when the static feature representation is employed (the first and the sec-

ond column of Table 4.1), training the classifier on the unbalanced training

set has a negative effect on the classification performance. On the other

hand, employing the dynamic feature representation, computed by LSTM,

improves the performances in unbalanced datasets. This observation is

consistent across three datasets.

Figure 4.4 further explores the superiority of the dynamic feature repre-

sentation when the training set is unbalanced. In the static feature space

case, balancing the training set and enforcing the wrong prior class dis-

tribution into the classification task, despite the higher recall rate, affects

negatively the precision of the classifier. In other words, the classifiers

have a higher false alarm rate, which could be problematic in real-world

applications. This deficit is recovered in the case of dynamic feature repre-

sentation where the classifier presents higher precision rate and comparable

recall with respect to static features. In fact, the LSTM-based architecture

by enforcing the true prior distribution of data into the training process

and, at the same time using all the recorded samples, provides an SMM

detection system with higher sensitivity and specificity.
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(d) Simulated Data Recall (e) SMM-1 Recall (f) SMM-2 Recall

(a) Simulated Data Precision (b) SMM-1 Precision (c) SMM-2 Precision

Figure 4.4: A comparison between precision and recall rates of classifiers trained on

balanced/unbalanced training sets for static/dynamic feature representations. Using dy-

namic feature space provides an SMM detection system with higher sensitivity and speci-

ficity.

4.3.2 Ensemble of LSTMs Stabilizes the Performance

The last column of Table 4.1 summarizes the results of the ensemble ap-

proach. The results show slight boost in the mean performance compared

to single LSTM classifiers, especially on SMM-2 (see dashed black line in

Figure 4.2). Figure 4.4 shows that both precision and recall contribute

equally to this improvement in F1-scores. In addition to the higher perfor-

mance, the main advantage of EL is demonstrated by the low variability

of results. This reduction in the variability is well-reflected in the re-

duced standard deviation around the mean performance in real datasets

(2% and 4% reduction in SMM-1 and SMM-2 datasets, respectively). In

other words, an ensemble of LSTMs provides more reliable SMM detector

in comparison to every single LSTM classifier.
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Table 4.1: F1-score results for SMM detection using static and dynamic feature spaces,

and ensemble learning in three benchmarked datasets. The results show training the CNN

classifier on unbalanced training sets causes the performance drop in the feature learning

scenario. Using the LSTM network to extract dynamic features from the signal alleviates

this problem to some degrees. The ensemble of LSTMs shows more stable performance

compared to single LSTM classifiers.

Data Sub
Static-Features

Balanced [37]

Static-Features

Unbalanced (1 sec) [37]

Static-Features

Unbalanced (2.5 sec)

Dynamic-Features

Unbalanced

Ensemble

Learning

S
im

u
la

te
d

1 0.78± 0.05 0.73± 0.13 0.95± 0.01 0.95± 0.01 0.95± 0.00

2 0.86± 0.03 0.78± 0.09 0.86± 0.13 0.95± 0.01 0.96± 0.01

3 0.80± 0.01 0.75± 0.13 0.95± 0.03 0.97± 0.01 0.97± 0.00

4 0.85± 0.03 0.73± 0.12 0.97± 0.01 0.96± 0.02 0.97± 0.01

5 0.79± 0.01 0.80± 0.04 0.91± 0.01 0.90± 0.02 0.91± 0.00

Mean 0.82± 0.03 0.76± 0.11 0.93± 0.06 0.95± 0.01 0.95 ± 0.01

S
M

M
-1

[1
9
]

1 0.74± 0.02 0.70± 0.02 0.73± 0.04 0.77± 0.03 0.80± 0.00

2 0.75± 0.02 0.63± 0.03 0.68± 0.04 0.71± 0.03 0.74± 0.00

3 0.68± 0.04 0.57± 0.08 0.56± 0.13 0.68± 0.05 0.72± 0.01

4 0.92± 0.01 0.88± 0.01 0.93± 0.00 0.91± 0.01 0.93± 0.00

5 0.51± 0.04 0.51± 0.08 0.51± 0.04 0.52± 0.04 0.51± 0.01

6 0.90± 0.01 0.79± 0.07 0.86± 0.12 0.90± 0.02 0.91± 0.00

Mean 0.74± 0.03 0.68± 0.06 0.71± 0.08 0.75± 0.03 0.77 ± 0.01

S
M

M
-2

[1
9
]

1 0.61± 0.11 0.33± 0.14 0.47± 0.15 0.53± 0.09 0.59± 0.03

2 0.20± 0.04 0.11± 0.03 0.13± 0.05 0.26± 0.06 0.29± 0.02

3 0.02± 0.01 0.02± 0.01 0.02± 0.01 0.02± 0.02 0.02± 0.02

4 0.72± 0.03 0.71± 0.14 0.90± 0.02 0.76± 0.09 0.87± 0.02

5 0.21± 0.09 0.14± 0.09 0.23± 0.17 0.35± 0.15 0.43± 0.08

6 0.36± 0.13 0.62± 0.08 0.68± 0.21 0.96± 0.01 0.98± 0.00

Mean 0.35± 0.08 0.32± 0.1 0.40± 0.13 0.48± 0.08 0.53 ± 0.04

4.4 Conclusions

In this study, we presented an application of deep learning in SMM de-

tection context by proposing an LSTM-based architecture for extracting

dynamic features on the sequence of IMU data. Comparing with the state-

of-the-art solution for SMM detection, and on both simulated and real

datasets, we illustrated the advantage of employing the temporal infor-

mation in improving the separability of SMM and no-SMM samples. We

experimentally showed that using around 2.5 seconds long interval for ex-

tracting dynamic features is the best choice for SMM detection purposes.
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Further, we showed using around 10 neurons in the LSTM unit is a rea-

sonable choice in order to extract the dynamics of samples over time. As

a side-advantage of transferring data to dynamic feature space, we experi-

mentally demonstrated the higher performance of our method when, in a

real-world setting, the distribution of samples in SMM and no-SMM classes

is highly skewed. We showed, while the skewness of samples negatively af-

fects the performance of the SMM detector in the static feature space,

exploiting the temporal patterns of multi-sensor IMU signals recovers its

performance. This advantage facilitates training high-performance models

by exploiting whole data sequences in real-time SMM detection scenarios.

We further illustrated the advantage of ensemble learning to provide more

stable and reliable SMM detectors. Our effort, for the first time in the

SMM detection context, demonstrated the superiority of recurrent struc-

tures in extracting discriminative temporal patterns from IMU signals.



Chapter 5

Novelty Detection using Deep

Normative Modeling for IMU-Based

Abnormal Movement Monitoring in

Parkinson’s Disease and Autism

Spectrum Disorders

5.1 Introduction

In Chapter 3 and 4, as many other research studies on stereotypical motor

movement (SMM) detection using wearable sensors [39, 19, 36, 142, 123],

we applied supervised machine learning algorithms to classify samples of

abnormal movements from normal ones. There are three main challenges

in applying supervised approaches for abnormal movement detection: (i)

This chapter is based on the following paper:

1. Nastaran Mohammadian Rad, et al., “Novelty Detection using Deep Normative Modeling for IMU-

Based Abnormal Movement Monitoring in Parkinsons Disease and Autism Spectrum Disorders.”

Accepted in Sensors, 2018.
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Monitoring in Parkinson’s Disease and Autism Spectrum Disorders

they generally rely on the availability of labeled data while, especially in

this context, data labeling is an expensive, time-consuming and subjective

task [143, 144, 145], as it needs full monitoring of subjects during the data

collection phase; (ii) severe class distribution skewness, where samples in

the normal class severely out-represent abnormal samples in recorded data

from patients with ASD and PD [146, 147]; this fact makes the classification

techniques sub-optimal for these applications; (iii) the heterogeneity of

non-stationary patterns in normal and abnormal movements that makes

the task of finding a separating hyper-cube in classification scenarios even

more cumbersome [148].

As an alternative for supervised approaches, novelty detection provides

all the ingredients needed for tackling the aforementioned challenges in

an unsupervised fashion. In general, novelty detection is defined as the

task of learning the overall characteristics of available normal samples

in the training phase and then using these characteristics to recognize

novel samples that differ in some respects from the normal samples at

test time [144, 149]. Based on this definition, novelty detection approaches

naturally need only samples of the normal class in the training phase;

hence, they do not need labeled data and are immunized against highly

imbalanced class distributions. More importantly, adopting a probabilistic

policy in novelty detection enables us to estimate the generative proba-

bility density function of the normal data, which can cover a wide and

heterogeneous spectrum of normal samples. These advantages made nov-

elty detection techniques very successful in many applications ranging

from fraud detection [150, 151], medical diagnosis [152, 153, 154], and

fault detection [155, 156], to anomaly and outlier detection in sensor net-

works [157, 158], video surveillance [159, 160], and text mining [161, 162].
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5.1.1 Contribution

In this chapter, we adopt a probabilistic novelty detection approach based

on normative modeling [163] in order to, first, model heterogeneous nor-

mal movements in Parkinson’s disease (PD) and ASD and, second, to use

the resulting model in a novelty detection paradigm to detect freezing of

gaits (FOGs) and stereotypical motor movements (SMMs) in respectively

PD and ASD patients. To this end, by assuming a multivariate normal

distribution on the collected accelerometer signals of normal movements

and exploiting the underlying principles of probabilistic deep neural net-

works [164], we extend the applications of normative modeling to unimodal

datasets. In general, a normative model is constructed in the training phase

by estimating a mapping function between two different data modalities,

e.g., behavioral covariates and biological measurements [163]. In this study,

we use the denoising autoencoder (DAE) to reconstruct the original IMU

signals of normal movements from their noisy versions. In fact, the model

implicitly learns the distribution of the normal movements. Using dropout

layers in the DAE architecture enables us to estimate also the variance

of predictions (which is necessary for normative modeling) in addition to

mean predictions. We compare the proposed method with state-of-the-

art supervised approaches, as well as classic one-class classification and

reconstruction-based novelty detection. Our experimental results on three

benchmark datasets illustrate that the proposed method provides a reason-

ably close performance to its supervised counterparts, whilst yielding the

best performance among other competing novelty detection approaches on

three benchmark datasets.

In the remaining text, we first review the state-of-the-art of novelty

detection techniques for abnormal movement detection. Then, we present

our proposed unsupervised novelty detection approach based on normative
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modeling. We then compare our experimental results with other novelty

detection and supervised methods. Finally, we discuss the advantages and

limitations of the proposed method and state possible future directions.

5.2 Related Works

Recent studies on automatic SMM and FOG detection using wearable sen-

sors have mainly focused on applying supervised machine learning and deep

learning approaches, such as convolutional neural network (CNN) and long

short-term memory (LSTM), to distinguish between the normal and ab-

normal movements [165, 166, 167, 91, 38, 82, 37]. These methods are based

on extracting or learning a set of robust features from the original signals

and then applying the supervised algorithms for abnormal movement de-

tection. The main drawback of these approaches, however, is their need for

labeled data. To overcome this problem, few studies have recently focused

on using novelty detection methods [168, 169]. In a FOG detection appli-

cation, Cola et al. [168] used a distance-based novelty detection method

on accelerometer signals to detect abnormal gait patterns. Their proposed

method consists of extracting a set of hand-crafted features and then ap-

plying a K-Nearest Neighbor (KNN) method. The KNN approach assumes

that normal gait samples are located at the close distance from each other.

Thus, a sample is determined as an abnormal sample if it is located far from

its neighbors. Their proposed method achieved on average 80% accuracy

for detecting abnormal gait samples. Despite the reported high accuracy

rate, the high computational complexity of KNN at the test time severely

limits its application in real-time applications. Elsewhere, Nguyen et al.

[169] proposed a probabilistic novelty detection method for abnormal gait

recognition in musculoskeletal disorders using Microsoft Kinect R© sensors.

Their method was based on training a Hidden Markov Model (HMM) to
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model the transition of human posture states in a gait cycle. Then, to

distinguish between the normal gait samples from the abnormal ones, a

threshold was defined based on the mean and standard deviation of the

estimated log-likelihood on normal gait samples.

Recently, deep learning approaches were also used for novelty detection

applications. Erfani et al. [170] proposed a hybrid model of an autoencoder

and one-class SVM for detecting anomalies in high-dimensional and large-

scale datasets including a daily activity dataset. A set of learned features

by autoencoders was fed to a one-class SVM in order to detect the abnormal

samples. Their experimental results showed the superiority of using one-

class SVM in the learned latent space rather than the original raw signal

space. Autoencoders are also widely used for detecting abnormal patterns

in medical images through the reconstruction error between the output

of the model and the actual input [171, 172]. Novelty detection based

on reconstruction error was also used by Khan and Taati [173] for fall

detection using wearable sensors. The proposed approach was based on

using a channel-wise ensemble of autoencoders for data reconstruction and

setting a threshold on the reconstruction error to distinguish the falling

instances.

5.3 Methods

In the context of abnormal movement detection using wearable sensors,

novelty detection is defined as detecting atypical movements in the test

phase while only normal movements are available in the training phase.

In this study, we consider a probabilistic novelty detection approach con-

sisting of the following three steps: (1) learning the distribution of normal

movements using a probabilistic denoising autoencoder; (2) quantifying the

deviation of each test sample from the distribution of normal movements,



66
Novelty Detection using Deep Normative Modeling for IMU-Based Abnormal Movement

Monitoring in Parkinson’s Disease and Autism Spectrum Disorders

!∗ = 1
%&

'()

*
+'(,X∗)

Z=|
-∗.!∗

/∗ | n samples

n samples

n samples

X*: Input data

1sec

… …

…
n samples

n

1

…

1sec

1sec

Denoising autoencoder

Summary statistics of 
n samples

…Sorted Z

Trimmed-mean

Computing the degree of abnormality
for each sample

Sample i

CDFi

,X∗

Y*

+'(,X∗) i∊{1,…,m}
/∗ = 1

%&
'()

*
(+'(,X∗) −!∗)5

Figure 5.1: The proposed method for the abnormal movement detection in the test time.

the so-called normative probability map (NPM), in the normative model-

ing framework; (3) computing the degree of novelty of each test sample by

fitting a generalized extreme value distribution on summary statistics of

its NPM.

We formalize these three steps in the next 3 subsections. Figure 5.1 also

shows the proposed method.

5.3.1 Learning the Distribution of Normal Movements via the

Denoising Autoencoder

As stated in the previous section, our method starts by modeling the nor-

mal movements. To do this, we use convolutional neural networks, which

are the state-of-the-art for activity recognition and movement monitoring

using wearable sensors. In particular, we train a denoising autoencoder

(DAE), which is a type of (autoencoding) neural network that aims to
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reconstruct (denoise) its inputs from noisy samples.

More formally, given a training set XN ∈ RnN×p consisting of nN samples

of normal movements drawn from a distribution PN of normal movements,

a trained DAE is a function fN that has the property that fN(X + ε) ≈ X

for X ∈ XN . Given sufficient training data, the network generalizes to

reconstruct any X ∈ PN .

How well the autoencoder is able to denoise its input is proportional to

how well that input matches the distribution of the training data, in our

case how well the input matches a normal movement. Hence, we can use

the distance between the reconstruction of DAE and the true sample, the

reconstruction error, as a measure of the likelihood PN(X) of the sample.

However, the neural network only produces a point estimate, that is

a single possible reconstruction given a noisy input. For some features

or samples, this prediction might be very accurate, while others can be

much harder to reconstruct. The reconstruction error does not take this

prediction uncertainty into account.

To use the prediction uncertainty properly, we use the NPM, introduced

in [163]. The original NPM method used Gaussian processes to model the

normal data, which also provide a variance as a measure of uncertainty.

To calculate the variance of the predictions in our denoising autoencoder

setup, we instead use dropout [164], to make the network nondeterministic.

As shown by Gal and Ghahramani [164], using Monte Carlo sampling by

applying dropout at test time provides an approximation of the posterior

PN(θ | X). After drawing m samples from the predictive distribution, we
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can calculate their empirical mean and variance,

M∗ =
1

m

m∑
i=1

fi(X̃
∗) (5.1a)

V∗ =
1

m

m∑
i=1

(fi(X̃
∗)−M∗)2. (5.1b)

Here, fi indicates the different variations of the autoencoder network,

which are formed by applying dropout before every weight layer.

5.3.2 Quantifying the Deviation from PN

In this study, we adapt the normative modeling framework in order to

quantify the deviation of each newly-seen test sample from the distribution

of normal movements PN . In this framework, the mean and variance of

the reconstruction are used to compute an NPM as follow:

Z =
X∗ −M∗
√

V∗
. (5.2)

Z or NPM scores are in fact z-scores, quantifying the deviation of test

samples in X∗ from a reconstructed normal sample under PN , in units of

standard deviation of the predictive distribution [174]. It combines two

sources of information: (1) the prediction error (difference between the

true and expected predicted responses) and (2) the predictive variance of

the test points.

5.3.3 Computing the Degree of Novelty

The NPM score of each test sample is a p-dimensional multivariate measure

of deviations. In order to summarize these deviations into a degree of

abnormality, we follow [163] and employ the generalized extreme value

distribution (GEVD) [175, 176] to model the samples in the extreme tails
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of PN (see Appendix A.1 for more details). In fact, we consider that

abnormal motor movements may occur as an extreme deviation from a

normal pattern. As in [163], we adopt a “block maxima” approach where

we compute the 90% trimmed mean of the top 1% values in Z of each

sample in order to summarize the deviations as a single number. Then,

to make probabilistic subject-level inferences about these deviations, we

fit a GEVD on the resulting summary statistics. The cumulative density

function of the resulting GEVD at a given test sample then can be used

as the probability of each sample being an abnormal sample [177].

5.3.4 Experimental Materials

We compare the performance of the proposed probabilistic novelty detec-

tion approach with reconstruction-based novelty detection [149, 170], one-

class support vector machine (SVM) [178] and supervised deep learning

approaches on two datasets: (i) an SMM dataset collected in a longitudi-

nal study from children with ASD [19] 1, and (ii) the Daphnet Freezing of

Gait dataset collected from PD patients [179]. In the following, we detail

the datasets and the preprocessing steps.

Datasets

We evaluate our proposed method on the SMM datasets described in

Section 3.2.4. We follow the same preprocessing steps explained in Sec-

tion 3.2.4 except that in the segmentation phase, segments with normal

movement samples are selected to train the model in the novelty detection

framework. Other partial normal segments were removed from the training

data.

1The SMM dataset and the full description of the data are publicly available at https://bitbucket.

org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads.

https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads
https://bitbucket.org/mhealthresearchgroup/stereotypypublicdataset-sourcecodes/downloads
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Table 5.1: The class distribution of normal and abnormal samples and the gender of

patients in three datasets.

Data Subject #Normal #Abnormal All Abnormal/All Gender

Daphnet-FOG [179]

Sub1 5714 334 6048 0.06 M

Sub2 3918 578 4496 0.13 M

Sub3 5488 912 6400 0.14 M

Sub4 6592 0 6592 0 M

Sub5 5139 1517 6656 0.23 M

Sub6 5917 419 6336 0.07 F

Sub7 4858 262 5120 0.05 M

Sub8 1812 620 2432 0.25 F

Sub9 4673 863 5536 0.16 M

Sub10 7104 0 7104 0 F

Total 50,482 6238 56,720 0.11 -

SMM-1 [19]

Sub1 21,292 5663 26,955 0.21 M

Sub2 12,763 4372 17,135 0.26 M

Sub3 31,780 2855 34,635 0.08 M

Sub4 10,571 10,243 20,814 0.49 M

Sub5 17,782 6173 23,955 0.26 M

Sub6 12,207 17,725 29,932 0.59 M

Total 106,395 47,031 153,426 0.31 -

SMM-2 [19]

Sub1 18,729 11,656 30,385 0.38 M

Sub2 22,611 4804 27,415 0.18 M

Sub3 40,557 268 40,825 0.01 M

Sub4 38,796 8176 46,972 0.17 M

Sub5 22,896 6728 29,624 0.23 M

Sub6 2375 11,178 13,553 0.82 M

Total 145,964 42,810 188,774 0.23 -

In addition to SMM dataset, we also evaluate the performance of the

peoposed method on the Daphnet Freezing of Gait dataset [179]. Daphnet

Freezing of Gait dataset, here referred to as Daphnet-FOG, were collected

from 10 PD patients at a 64 Hz frequency rate while participants wore

three 3-axis accelerometer sensors on their shank, thigh and belt. Dur-

ing the experiment, participants were instructed to perform walking tasks.

The whole experiment was recorded with a digital video camera. Then,

two physiotherapists annotated the FOG episodes using the video record-
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ings. Following the preprocessing stage in [90], we first downsampled the

accelerometer data to 32 Hz. The data were then segmented into 1 second-

long intervals using a sliding window. The sliding window was moved along

the time dimension with 10 time-steps to make overlaps between consec-

utive windows. Similar to SMM dataset, in the segmentation phase, only

segments with normal movement samples were selected to train the model.

Table 5.1 summarizes the number of normal and abnormal samples for

each subject in the SMM and Daphnet-FOG datasets. The difference in the

number of samples in the abnormal and normal classes represents the un-

balanced nature of data where in the SMM-1 and SMM-2 datasets, 31% and

23% of samples are in the SMM class, and in the Daphnet-FOG dataset,

11% of samples are in the FOG class.

Network Architectures

Considering their different rhythmic characteristics, we used different net-

work architectures for the Daphnet-FOG and SMMs datasets. We adopted

the CNN architecture that was proposed by Hammerla et al. [90] for the

Daphnet-FOG dataset and the CNN architecture proposed by Rad et al. [39]

for the SMM datasets. In the following, we detail how these architectures

are manipulated to serve our purpose explained in Section 5.3 2.

1. DAE architecture for the Daphnet-FOG dataset: The original CNN

architecture in Hammerla et al. [90] was used for encoding the signal

into a lower dimensional representation. This architecture contains

four convolutional layers alternating convolution, batch normalization,

rectified linear units (ReLU) and max-pooling layers to map the large

input space to a lower dimensional feature space. A fully-connected

layer is then stacked on top of the fourth convolution layer to form the

encoder. We concatenate a mirror reversal of the CNN network to the
2The Keras library [124] is used to implement DAE and CNN architectures.



72
Novelty Detection using Deep Normative Modeling for IMU-Based Abnormal Movement

Monitoring in Parkinson’s Disease and Autism Spectrum Disorders

last encoder layer in order to reconstruct the input signal in a DAE

architecture. In the decoding part, we replace max-pooling layers with

up-sampling layers. In order to capture the model uncertainty, we

placed a dropout layer before every weight layer [164]. The resulting

architecture is shown in Figure 5.2a.

2. DAE architecture for SMM datasets: Similar to [39], the encoder ar-

chitecture consists of three convolutional layers, which alternates con-

volution, batch normalization, ReLUs and average-pooling layers to

transform the raw feature space into a lower dimensional set of fea-

tures. A fully-connected layer is then stacked on top of the third

convolution layer. The resulting latent vector is then decoded in the

decoder to reconstruct the input signal. Similar to the DAE architec-

ture for the Daphnet-FOG dataset, we concatenate a mirror reversal

of the CNN network to the last layer of the encoder in order to con-

struct the decoder. To capture the prediction uncertainty, dropout

layers are used before every weight layer. The architecture and the

configuration of each layer are depicted in Figure 5.2b.

Experimental Setups and Evaluation

We conducted four experiments to evaluate the performance of the pro-

posed method against three competing approaches:

• Experiment 1, normative modeling: We followed the proposed proce-

dure explained in Section 5.3, using the DAE architectures described

in Section 5.3.4 for learning the distribution of the normal move-

ments on the SMM-1, SMM-2 and Daphnet-FOG datasets. In this

setting, models are trained in an unsupervised manner and only on

the samples of normal movements. For training the DAEs, we used
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Figure 5.2: The architecture of convolutional denoising autoencoder for (a) the Daphnet-

FOG dataset and (b) the SMM dataset. Each colored box represents one layer. The

type and configuration of each layer are shown inside each box. For example, Conv 64-5

denotes a convolutional layer with 64 filters and the kernel size of 5.

the RMSprop optimizer to minimize the mean squared error loss func-

tion. To compute M∗ and V∗, we drew m = 50 MC samples (using

dropout at test time, it is possible to randomly sample from network

weights m times) from DAE predictions (the reconstructed inputs),

and the mean and variance across these 50 MC samples are used to

compute the M∗ and V∗ matrices. In all experiments, we fix the

dropout level to 0.1. Later in order to investigate the effect of the

dropout level on the performance of the proposed novelty detection

approach, we repeat this experiment for different dropout probability

levels δ = {0.1, 0.2, 0.3, 0.4, 0.5} and compare the results.

• Experiment 2, reconstruction-based: The goal of this experiment is to

assess the effect of incorporating prediction uncertainties, i.e., V∗, on

the performance of the novelty detection system. All the experimen-
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tal settings in this experiment are similar to Experiment 1, except for

computing the NPMs, where we use Z = X∗ −M∗ instead of Equa-

tion 5.2. Since in this setting, only the reconstruction error is used to

construct a model of normal movements, we refer to this experiment

as “reconstruction-based”.

• Experiment 3, one-class SVM: The goal in this experiment is to com-

pare the proposed method for novelty detection with one-class classi-

fication. To this end, we train a one-class SVM model in a novelty de-

tection setting [149, 180, 170, 181]. One-class SVM fits a hyper-sphere

decision boundary on a nonlinearly-transformed feature space to in-

clude the majority of samples in the normal class and detects anoma-

lies as deviations from the learned decision boundary. In this experi-

ment in a similar setting used by Erfani et al. [170], we use the learned

reduced-rank latent space via the DAE model, i.e., YN ∈ RnN×q, to

train a one-class SVM model. We use this model later to distinguish

the normal and abnormal movements on the samples. For the one-

class SVM, we employed the implementation available in the scikit-

learn [182] package. We used the radial basis function (RBF) kernel

with default hyperparameters 3, where ν = 0.5 and γ = 1
q .

• Experiment 4, supervised: To compare the performance of the pro-

posed unsupervised novelty detection technique with supervised clas-

sification, we used the CNN architecture proposed in Hammerla et

al. [90] and Rad et al. [39] on the Daphnet-FOG and SMM datasets,

respectively, in a fully-supervised scenario.

Note that since the samples for Subjects 4 and 10 in the Daphnet-

FOG dataset only contain normal movements (see Table 5.1), it is not

3Considering our assumption that only normal movement samples are available during the training

phase, fine-tuning these hyperparameters is not possible. See Section 5.5.2 for the discussion.
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possible to evaluate the benchmark approaches on these two subjects in

Experiments 1–3. Thus, in an extra setting, we repeat Experiments 1–3

when only these two subjects are used in the training phase. This setting

is even more close to the reality as only subjects with normal movements

are available during the training phase (in this case, there is no need for

the additional preprocessing procedure to select the normal segments).

In all experiments, the leave-one-subject-out cross-validation is used for

the model evaluation, and the area under the receiver operating charac-

teristic curve (ROC), i.e., AUC, is computed as the performance measure.

The whole experimental procedures are repeated 5 times to report the

standard deviation over the mean AUC performances.

5.4 Results

Table 5.2 summarizes single-subject and average AUC measures for the

four experiments that were described in Section 5.3.4 on the Daphnet-FOG,

SMM-1, and SMM-2 datasets. On the Daphnet-FOG dataset, we observed

a large variance of results across subjects. In particular, the normative

modeling and reconstruction-based methods achieved a much lower AUC

performance on Subjects 6 and 8 than on the other subjects. These two

subjects were the only females out of the 3 ones in the dataset exhibiting

atypical movement behavior (see Table 5.1). A potential explanation for

the lower performance is that, when training on mainly male subjects,

novelty detection models, which use the reconstruction error, are unable

to reconstruct normal female movement behavior correctly. On the SMM

datasets, the performance was more similar across subjects, notably on

the SMM-1 dataset. This could be due to the controlled setting used to

collect data: while wearing the sensors, participants were observed in the

lab, sitting in a comfortable chair with a familiar teacher [123]. Results
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on the Daphnet-FOG dataset also indicated the presence of possible biases

due to the limited size of the data from normal subjects (see also the

results reported in Section 5.4.4). The public availability of larger datasets

would allow a more thorough assessment of the methods for abnormal

movement detection in PD and ASD, which would be highly beneficial to

advance patient care and research. The results are further investigated in

the following sections.

Table 5.2: The average of AUC results for novelty detection using normative modeling,

reconstruction-based and one-class SVM on three benchmark datasets.

Dataset Subject Normative Reconstruction 1C-SVM Supervised

Daphnet-FOG

Sub1 0.87± 0.01 0.64± 0.00 0.73± 0.02 0.80± 0.02

Sub2 0.80± 0.03 0.80± 0.00 0.54± 0.03 0.95± 0.01

Sub3 0.87± 0.01 0.77± 0.00 0.43± 0.06 0.90± 0.02

Sub5 0.83± 0.01 0.70± 0.00 0.60± 0.02 0.80± 0.03

Sub6 0.60± 0.03 0.50± 0.00 0.70± 0.05 0.80± 0.04

Sub7 0.79± 0.01 0.66± 0.00 0.67± 0.02 0.92± 0.01

Sub8 0.64± 0.01 0.48± 0.00 0.70± 0.02 0.65± 0.03

Sub9 0.77± 0.02 0.51± 0.00 0.62± 0.05 0.94± 0.01

Mean 0.77 ± 0.01 0.63± 0.00 0.62± 0.01 0.84± 0.01

SMM-1

Sub1 0.86± 0.01 0.71± 0.00 0.32± 0.01 0.89± 0.01

Sub2 0.85± 0.01 0.88± 0.00 0.23± 0.03 0.83± 0.02

Sub3 0.87± 0.02 0.91± 0.00 0.22± 0.03 0.93± 0.01

Sub4 0.88± 0.03 0.81± 0.01 0.31± 0.04 0.95± 0.00

Sub5 0.76± 0.03 0.87± 0.01 0.26± 0.01 0.83± 0.03

Sub6 0.88± 0.03 0.82± 0.00 0.30± 0.02 0.93± 0.01

Mean 0.85 ± 0.01 0.83± 0.00 0.28± 0.01 0.89± 0.01

SMM-2

Sub1 0.69± 0.05 0.76± 0.01 0.37± 0.04 0.79± 0.07

Sub2 0.61± 0.04 0.58± 0.00 0.46± 0.02 0.53± 0.03

Sub3 0.62± 0.02 0.63± 0.02 0.42± 0.02 0.63± 0.05

Sub4 0.74± 0.09 0.42± 0.02 0.49± 0.05 0.88± 0.06

Sub5 0.65± 0.09 0.77± 0.03 0.45± 0.03 0.78± 0.04

Sub6 0.65± 0.03 0.73± 0.02 0.44± 0.02 0.74± 0.11

Mean 0.66 ± 0.02 0.65± 0.01 0.44± 0.01 0.73± 0.03
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5.4.1 Normative Modeling Outperforms Reconstruction-Based

and One-Class SVM in Novelty Detection

The comparison between results achieved by our normative modeling method

and its reconstruction-based variant indicates the beneficial effect of in-

corporating the uncertainty of the predictions in the NPM scores for the

Daphnet-FOG dataset. In this context, for all subjects, the normative

modeling method outperformed the reconstruction-based one. On this

dataset, normative modeling also outperformed one-class SVM on all ex-

cept one subject. These results illustrate the effectiveness of normative

modeling method for detecting movement disorder behavior in PD pa-

tients.

On the SMM-1 and SMM-2 datasets, normative modeling and reconstruction-

based modeling methods achieved similar performance. This indicates that

the uncertainty of the prediction did not significantly affect the ranking

of the samples obtained using the reconstruction-error scores. On this

dataset, the performance of one-class SVM was not very satisfactory. This

result can be explained by the fact that one-class SVM does not rely on

the properties of the distribution of the training data; rather, it fits a de-

cision boundary on a nonlinearly-transformed feature space to include the

majority of samples in the normal class and detects anomalies as samples

fall outside the learned decision boundary. Therefore, the performance of

this method is highly dependent on selecting proper parameters to control

the size of the boundary.

5.4.2 Novelty Detection Methods vs. Supervised Learning Meth-

ods

Our experimental results in Table 5.2 demonstrate that our normative

modeling method provided a reasonably close performance to its supervised



78
Novelty Detection using Deep Normative Modeling for IMU-Based Abnormal Movement

Monitoring in Parkinson’s Disease and Autism Spectrum Disorders

Figure 5.3: ROC curves corresponding to the reported AUCs for Subjects 1 and 6 of the

Daphnet-FOG dataset in Table 5.2.

counterpart on the SMM-1 dataset and a relatively close performance to

the supervised method for the SMM-2 and Daphnet-FOG datasets. In

particular, on the Daphnet-FOG dataset, in two cases (Subjects 1 and

5), the normative modeling method outperformed the supervised method

(with a 7% and 3% improvement, respectively). Furthermore, on the SMM-

1 dataset, the reconstruction-based method outperformed the supervised

method in two cases, Subjects 2 and 5, with a 5% and 4% improvement,

respectively.

To get a summarized demonstration of the performance of different nov-

elty detection methods, we consider the best and the worst normative mod-

eling results on the Daphnet-FOG dataset, i.e., Subjects 1 and 6. ROC

curves for these subjects are depicted in Figure 5.3. In Figure 5.3a, we can

see that both the reconstruction-based and normative modeling methods

were able to identify the most normal (negative) data for Subject 1 cor-

rectly. However, the reconstruction-based approach was not able to find

the most likely abnormal movement (positive) samples. Figure 5.3b shows

the results for Subject 6. Here, around 1/4 of the samples were clearly

identified as normal by most methods; however, the other samples could
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not be distinguished. In the normative modeling method, both positive

and negative samples were assigned a high likelihood of being abnormal,

perhaps because the normal movements for this subject differed too much

from those in the training data.

Table 5.3: The average AUPR for novelty detection using normative modeling,

reconstruction-based and one-class-SVM on three benchmark datasets.

Dataset Subject Normative Reconstruction 1C-SVM Supervised

Daphnet-FOG

Sub1 0.48± 0.02 0.11± 0.00 0.11± 0.02 0.38± 0.02

Sub2 0.32± 0.03 0.51± 0.01 0.13± 0.01 0.79± 0.03

Sub3 0.51± 0.01 0.35± 0.00 0.12± 0.02 0.55± 0.02

Sub5 0.54± 0.01 0.36± 0.00 0.28± 0.02 0.59± 0.03

Sub6 0.08± 0.01 0.06± 0.00 0.10± 0.02 0.33± 0.06

Sub7 0.22± 0.01 0.09± 0.00 0.09± 0.01 0.49± 0.04

Sub8 0.38± 0.01 0.26± 0.00 0.43± 0.05 0.34± 0.04

Sub9 0.42± 0.03 0.19± 0.00 0.21± 0.05 0.71± 0.05

Mean 0.37 ± 0.01 0.24± 0.00 0.18± 0.01 0.52± 0.01

SMM-1

Sub1 0.69± 0.01 0.56± 0.00 0.15± 0.00 0.76± 0.02

Sub2 0.63± 0.02 0.76± 0.00 0.17± 0.01 0.72± 0.03

Sub3 0.57± 0.03 0.60± 0.01 0.05± 0.00 0.70± 0.04

Sub4 0.86± 0.02 0.78± 0.01 0.39± 0.02 0.93± 0.00

Sub5 0.50± 0.05 0.75± 0.01 0.18± 0.00 0.67± 0.04

Sub6 0.90± 0.02 0.81± 0.01 0.47± 0.01 0.95± 0.01

Mean 0.69± 0.01 0.71 ± 0.00 0.23± 0.00 0.79± 0.01

SMM-2

Sub1 0.56± 0.05 0.65± 0.01 0.33± 0.03 0.71± 0.08

Sub2 0.23± 0.02 0.20± 0.00 0.16± 0.01 0.22± 0.01

Sub3 0.01± 0.00 0.02± 0.00 0.01± 0.00 0.02± 0.01

Sub4 0.37± 0.07 0.20± 0.00 0.18± 0.02 0.66± 0.16

Sub5 0.33± 0.10 0.42± 0.04 0.22± 0.02 0.48± 0.07

Sub6 0.87± 0.01 0.90± 0.01 0.78± 0.01 0.91± 0.04

Mean 0.40 ± 0.02 0.40± 0.01 0.28± 0.01 0.50± 0.03

Since the datasets presented in this study are highly skewed, especially

the Daphnet-FOG dataset, in addition to AUC, we also evaluated the per-
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formance of the methods using the area under the precision-recall curve

(AUPR) [183]. Compared to AUC, the AUPR score places more weight on

the highly ranked predictions by each method. As is shown in Table 5.3,

on the Daphnet-FOG dataset, the normative modeling method achieved a

higher average AUPR than other novelty detection methods. For some sub-

jects, in particular Subject 6, all of the novelty detection methods showed

low performances. We believe this is because this subject was too different

from the training data, and hence, none of the methods found clear FOG

signals, which can also be seen in Figure 5.3b. On the SMM datasets, nor-

mative modeling and reconstruction-based methods achieved comparable

performance in terms of AUPR, while both clearly outperformed one-class

SVMs. The AUPR scores for the autoencoder-based methods were quite

high on this dataset, which indicates that they were able to find clear

instances of SMM behaviors in all subjects correctly.

5.4.3 Effect of Dropout Level

Figure 5.4 depicts the effect of different dropout probabilities on the per-

formance of the normative modeling method on the SMM-1, SMM-2 and

Daphnet-FOG datasets with the leave-one-subject-out scheme. As is shown

in Figure 5.4, using the different dropout probabilities had a negligible ef-

fect on the performance of the normative modeling method for the SMM

and Daphnet-FOG datasets. Thus, a value between 0.1 and 0.4 can be

used as the dropout probability level without a significant drop in the

performance.

5.4.4 Training Only on Normal Subjects

It is interesting to investigate how our novelty detection methods perform

when only data from subjects without atypical movement behavior are
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Daphnet-FOG

SMM-1

SMM-2

Figure 5.4: The effect of different dropout probabilities on the performance of the nor-

mative modeling method.

present in the training set. In this setting, the expert interaction and

preprocessing time were reduced. Therefore, in this experiment, we trained

the considered novelty detection models only on two normal subjects, i.e.,

Subjects 4 and 10 in the Daphnet-FOG dataset (see Table 5.1). Results

of this experiment are shown in Table 5.4. As expected, there is a drop in

the average performance compared to the results of Experiment 1 (see the

results for Daphnet-FOG dataset in Table 5.2), which is likely due to the

limited training data with just two subjects. Interestingly, in this setting,

the normative modeling method improved its performance on Subject 2

(0.92 average AUC), showing that the normal movement behavior of this

subject was closer to that of Subjects 4 and 10 than to that of the other

subjects. Overall, the results of normative modeling and reconstruction-

based methods decreased when using less data, while the results of one-

class SVM did not change significantly, indicating that the latter method

is incapable of exploiting information from more subjects.
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Table 5.4: The average of AUC results for novelty detection using normative modeling,

reconstruction-based and one-class-SVM trained only on the two available normal subjects

(Subjects 4 and 10) of the Daphnet-FOG dataset.

Dataset Subject Normative Reconstruction 1C-SVM

Daphnet-FOG

Sub1 0.81± 0.01 0.63± 0.00 0.76± 0.00

Sub2 0.92± 0.00 0.81± 0.00 0.65± 0.02

Sub3 0.75± 0.08 0.67± 0.01 0.41± 0.05

Sub5 0.82± 0.01 0.69± 0.00 0.63± 0.02

Sub6 0.51± 0.05 0.41± 0.01 0.77± 0.03

Sub7 0.67± 0.03 0.53± 0.00 0.65± 0.01

Sub8 0.41± 0.03 0.41± 0.01 0.71± 0.03

Sub9 0.58± 0.09 0.44± 0.01 0.67± 0.04

Mean 0.68 ± 0.02 0.57± 0.00 0.65± 0.01

5.5 Discussion

5.5.1 Estimating the Prediction Uncertainty: Deep Learning vs.

Gaussian Processes

Considering our multi-variate Gaussian assumption on the distribution of

the IMU signal of normal movements, multi-task Gaussian process regres-

sion (MTGPR) [184] seemed to be a natural choice for estimating the struc-

tured prediction uncertainty in normative modeling. However, MTGPR

comes with extra computational overheads in time and space (O(n3
Np

3) and

O(n2
Np

2) here nN referes to the number of normal samples and p referes

to the number of features) when computing the inverse cross-covariance

matrices in the optimization and prediction phases. This problem is even

more pronounced when dealing with multi-subject IMU-based abnormal

movement detection when generally nN is in order of 105 to 106. Despite ex-

tensive studies to reduce these computational barriers [185, 186, 187, 154],
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the overall efficiency of the proposed approaches remained far below the

minimum requirements in our target applications. To overcome this prob-

lem, in this study, we proposed to replace the MTGPR with a probabilistic

DAE architecture for estimating the prediction uncertainties in the norma-

tive modeling framework. As supported by our experimental results, the

estimated prediction uncertainties via DAE edged the novelty detection

performance in comparison with the reconstruction-based approach. Our

contribution facilitates the application of normative modeling on the large

datasets (with large nN or p) in the big-data era.

5.5.2 Normative Modeling vs. One-Class Classification

One-class classification [188] and more specifically one-class SVM is a com-

mon choice for solving novelty detection problems [149, 180, 181]. It is

shown that one-class SVMs achieve poor performance on high-dimensional

datasets, while a combination of a feature extraction method such as deep

belief networks with one-class SVM enhances the performance of such nov-

elty detection methods [170]. However, the prediction performance of one-

class SVM is highly sensitive to its hyperparameters (e.g., in the case of

RBF kernel ν and γ), especially on noisy data. This fact is well demon-

strated in our experiments, where one-class SVM performed better when

trained only on normal subjects; data, i.e., less noisy data (compare the

results in Tables 5.2 and 5.4). Therefore, fine-tuning of one-class SVM hy-

perparameters is necessary; however, this is only possible if we have access

to the labeled validation data during the model selection phase. This limi-

tation leaves the only option of using default parameters when dealing with

non-labeled data, which results in sub-optimal performances. The pro-

posed deep normative modeling approach for novelty detection overcomes

this barrier, as our experiments on three benchmark datasets show that its

only hyperparameter, i.e., the dropout level, can be set to 0.1–0.4 without
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a significant drop in the prediction performance.

5.5.3 Toward Modeling Human Normal Daily Movements Using

Wearable Sensors

A possible solution to tackle the common issues in the supervised abnormal

movement classification is to define the problem of abnormal movement de-

tection in an unsupervised framework and try to assemble a probabilistic

model of human normal daily movements. If successful, then in, for exam-

ple, a novelty detection scenario, any large deviation from this model can

be considered as an abnormal movement for the diagnosis and treatment

of patients with motor deficiencies. Of course, learning a realistic repre-

sentation of all possible human movements is very challenging due to the

large set of possible movements, inter- and intra-subject heterogeneity and

the prevalence of noisy samples. The proposed deep normative modeling

method provides an early, but effective step toward this direction as it pro-

vides all the needed ingredients for modeling heterogeneous normal human

movements in an unsupervised fashion.

5.5.4 Limitations and Future Work

Using DAE for learning PN limits the application of the proposed method

only to distance-based novelty detection approaches in the original and

latent space; hence, it is not applicable in the density-based novelty detec-

tion [171]. This is because the DAE model is by nature unable to determine

the density of normal data in the latent space. To address this problem, one

possible future direction is to use generative alternative models instead of

DAE such as variational autoencoders [189], adversarial autoencoders [190]

or generative adversarial networks [191]. Another future direction is to use

the proposed framework for implementing a real-time mobile application
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for abnormal movement detection. The proposed DAE-based normative

modeling approach, unlike its MTGPR-based alternatives, does not need

to store huge inverse covariance matrices at the test time. Adding to this

the low computational complexity of DAE at the prediction phase (just

matrix multiplications and summations) and high potential for parallel

programming (for computing MC repetitions), the proposed method offers

a very well-suited approach for online mobile novelty detection applica-

tions.

5.6 Conclusions

In this study, we addressed the problem of automatic abnormal movement

detection in ASD and PD patients in a novelty detection framework. In the

normative modeling framework, we used a convolutional denoising autoen-

coder to learn the distribution of the normal human movements from the

accelerometer signals. We showed how the normative modeling framework

can be employed to quantify the deviation of each unseen sample from the

normal movement samples. We demonstrated empirically that our pro-

posed method outperforms two other baseline novelty detection methods

on the SMM and Daphnet-FOG datasets. Our method: (i) overcomes the

high computational complexities of estimating the prediction uncertainties

in multi-task normative modeling, thus facilitating its application to large

datasets in the big-data era; (ii) unlike the common one-class classification

setting, our method relaxes the need for having access to the labeled vali-

dation data during the model selection phase; and more importantly, (iii)

our method provides the first step toward modeling human normal daily

movements using wearable sensors. The proposed approach gathers all the

required ingredients for implementing a real-time mobile application for

abnormal movement detection in the future.
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Chapter 6

Conclusions

Developing a real-time mobile application for detecting abnormal move-

ments in Parkinson’s disease (PD) and autism spectrum disorder (ASD)

patients can be considered as an ultimate goal in the context of automatic

abnormal movement detection using wearable sensors. Developing such an

application that can be incrementally adapted to new patients’ data or

on the same patient as his/her kinematics change in the real-life settings,

could both advance research studies and provide new intervention tools

that help researchers, clinicians, and caregivers to continuously monitor,

better understand, and cope with abnormal behaviors in ASD and PD

patients. Achieving this goal is, however, challenging due to the high in-

ter and intra-subject variability in the acquired inertial measurement unit

(IMU) data and having no access to the labels of collected data in real-life

settings. The main focus of the research presented in this thesis was on

addressing these particular challenges in automatic abnormal movement

detection.

In this thesis, the problem of inter and intra-subject variability is at-

tacked by using feature learning and transfer learning capabilities of deep

neural networks. In particular, a new application of convolutional neu-

ral network (CNN) is proposed to learn an intermediate representation of

87
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IMU signals in individuals with ASD. The proposed architecture is fur-

ther used to transfer the knowledge, learned from one stereotypical motor

movement (SMM) dataset to another dataset via the network initializa-

tion in a longitudinal scenario. The experimental results on one simulated

and two real datasets indicate that i) substituting hand-crafted features

with automatic feature learning using CNN results in more discrimina-

tive and robust features in across subject SMM detection scenarios; and

ii) parameter transfer learning improves the adaptability and as a result,

enhances the performance of the SMM detection system when applied to

newly seen dataset in a longitudinal setting. Although the proposed deep

neural network provides an accurate SMM detection model, the proposed

fully supervised scheme for training the SMM detection model is prob-

lematic in the real-time adaptation as the adaptation to new unseen data

should be performed only based on the input unlabeled data. This limita-

tion motivates future researches on the online adaptation of the system in

an unsupervised manner. Transductive transfer learning with the possibil-

ity of incremental training can possibly facilitate the online adaptation of

an automatic abnormal movement detector in real-time scenarios.

In order to benefit more from the temporal fluctuations of IMU signals,

a combination of long short-term memories (LSTM) with a CNN archi-

tecture is proposed to learn the dynamic features on a sequence of IMU

signals. The experimental results demonstrate i) employing the temporal

information improves the separability of SMM and no-SMM samples; ii)

while the skewness of samples negatively affects the performance of the

SMM detector in the static feature space, exploiting the temporal pat-

terns of multi-sensor IMU signals recovers its performance. Thus, learning

temporal information of IMU signals facilitates the application of SMM

detection in more realistic environments where the incoming samples are

highly skewed. Furthermore, in order to improve the reliability and sta-
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bility of the SMM detector, an ensemble learning algorithm based on the

best LSTM learners is proposed. The experimental results show a slight

improvement in the mean performance compared to single LSTM classi-

fiers. In addition, the ensemble of LSTMs provides a more reliable SMM

detector in comparison to every single LSTM classifier by reducing the

variability of results.

The problem of lack of labeled data in clinical applications of wearable

sensors is addressed by redefining the abnormal movement detection prob-

lem in a novelty detection paradigm using the deep normative modeling

method. To this end, heterogeneous normal movements in PD and ASD

patients are modeled using a probabilistic denoising autoencoder. Then the

resulting normative model is used to detect freezing of gaits (FOG) and

SMMs in respectively PD and ASD patients. The experimental results

on three benchmark datasets illustrate the effectiveness of the proposed

method, which outperforms one-class SVM and the reconstruction-based

novelty detection approaches. The proposed fully unsupervised novelty

detection method achieved a relatively close performance to its supervised

counterparts.

Possible future direction from this thesis can be summarized as follows:

1. Evaluating our deep learning methods on a large dataset col-

lected in the realistic conditions: In this thesis, the deep learn-

ing methods are trained and evaluated on several benchmark IMU

datasets collected from ASD and PD patients in controlled clinical

conditions. To ensure the generalization across real-world datasets,

it is necessary to evaluate the proposed methods on the large IMU

datasets collected from patients in uncontrolled and wild real-life en-

vironments.

2. A real-time implementation of abnormal movement detec-
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tion system: The proposed deep normative modeling method pro-

vides the possibility of modeling the normal human movement data

during daily life activities without the need for having access to la-

beled samples. Furthermore, this method has the low computational

complexity which makes it as an appropriate method to be imple-

mented in the real-time abnormal detection movement detection in

neuro-developmental and neuro-degenerative patients.

3. Incorporating physiological data to predict abnormal move-

ments: Although IMU sensors are well-suited for the abnormal move-

ment detection in ASD and PD patients, the collected data using

these sensors do not always provide adequate information to achieve

a reliable assessment on the abnormal movements out of clinical set-

tings. For example, it is sometimes difficult to detect from the IMU

data alone if a slowness of movement is due to bradykinesia or as

a result of fatigue, anxiety, or other environmental factors. Since

changes in physiological behaviors might occur during and before the

onset of abnormal movements, thus monitoring and detecting these

changes can help to have a higher abnormal movement detection per-

formance. Incorporating physiological data captured by electrocardio-

graphy (ECG) and Electromyographic (EMG) sensors in the detection

system provide the possibility of predicting the onset of abnormal

movements rather than just detecting them.



Appendix A

Appendices

A.1 Generalized Extreme Value Distribution

For a random variable x ∈ R, the cumulative distribution function of the

GEVD, i.e., F (x), is defined as below [176]:

F (x) =

{
e−[1+ξ(x−µ)/σ]−1/ξ , ξ 6= 0

e−e
[−(x−µ)/σ]

, ξ = 0
, (A.1)

µ ∈ R and σ > 0 are the location and scale parameter, respectively. ξ ∈ R
is the shape parameter and depending on whether ξ < 0, ξ = 0 or ξ > 0 the

distribution follows the special cases of GEVD, namely Weibull, Gumbel

and Fréchet, respectively.
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Conclusioni

Lo sviluppo di un’applicazione mobile in tempo reale per il rilevamento di

movimenti anomali nei pazienti con PD e ASD pu essere considerato come

un obiettivo finale nel contesto del rilevamento automatico del movimento

anomalo tramite sensori indossabili. Sviluppare un’applicazione di questo

tipo che pu essere adattata in modo incrementale ai dati dei nuovi pazienti o

allo stesso paziente considerato che la cinematica del paziente cambia nelle

impostazioni della vita reale, potrebbe sia promuovere studi di ricerca e

fornire nuovi strumenti di intervento per aiutare ricercatori, medici e oper-

atori sanitari a monitorare continuamente, comprendere meglio e far fronte

a comportamenti anormali nei pazienti con ASD e PD. Il raggiungimento

di questo obiettivo tuttavia impegnativo a causa dell’elevata variabilit -

di tipo inter e intra-soggetto - dei dati IMU acquisiti e della mancanza

di informazione semantica sul tipo di anomalia dei dati raccolti nelle im-

postazioni reali. L’obiettivo principale della ricerca presentata in questa

tesi quello di affrontare queste importanti problematiche nel rilevamento

automatico del movimento anormale.

In questa tesi, il problema della variabilit inter e intra-soggetto viene

affrontato utilizzando funzionalit di apprendimento funzionale e di trasferi-

mento delle reti neurali conosciute come ‘deep neural networks’. In partico-

lare, viene proposta una nuova applicazione delle reti neurali con architet-

tura nota come ‘convolutional neural networks’ (CNN) per apprendere

una rappresentazione intermedia dei segnali IMU in individui con ASD.
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L’architettura proposta viene inoltre utilizzata per trasferire le conoscenze,

apprese da un set di dati SMM a un altro set di dati tramite l’inizializzazione

della rete in uno scenario longitudinale. I risultati sperimentali su un in-

sieme di dati simulati e due reali indicano che i) sostituire le caratteristiche

artigianali con l’apprendimento automatico delle funzioni utilizzando CNN

produce caratteristiche piu’ discriminanti e robuste; e ii) l’apprendimento

del trasferimento dei parametri migliora l’adattabilit e, di conseguenza,

migliora le prestazioni del sistema di rilevamento SMM quando applicato

a set di dati in un’impostazione longitudinale. Sebbene la proposta di

rete neurale profonda fornisca un accurato modello di rilevamento SMM,

lo schema completamente supervisionato proposto per addestrare il mod-

ello di rilevamento SMM problematico nell’adattamento in tempo reale

poich l’adattamento a nuovi dati dovrebbe essere eseguito solo in base

ai dati in ingresso senza etichetta. Questa limitazione motiva le future

ricerche sull’adattamento online del sistema in modo non supervisionato.

L’apprendimento del trasferimento transduttivo con la possibilit di un ad-

destramento incrementale pu eventualmente facilitare l’adattamento online

di un rilevatore di movimento anormale automatico in scenari in tempo

reale.

Per beneficiare maggiormente delle fluttuazioni temporali dei segnali

IMU, viene proposta una combinazione di LSTM con un’architettura CNN

per apprendere le caratteristiche dinamiche su una sequenza di segnali

IMU. I risultati sperimentali dimostrano che i) utilizzando le informazioni

temporali si migliora la separabilit dei campioni SMM e no-SMM; ii) men-

tre l’asimmetria dei campioni influisce negativamente sulle prestazioni del

rivelatore SMM nello spazio delle caratteristiche statiche, lo sfruttamento

dei pattern temporali dei segnali IMU multi-sensore recupera le sue prestazioni.

Pertanto, l’apprendimento delle informazioni temporali dei segnali IMU fa-

cilita l’applicazione del rilevamento SMM in ambienti pi realistici in cui i
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campioni in ingresso sono fortemente distorti. Inoltre, al fine di migliorare

l’affidabilit e la stabilit del rivelatore SMM, viene proposto un algoritmo di

apprendimento basato sui migliori studenti LSTM. I risultati sperimentali

mostrano un leggero miglioramento delle prestazioni medie rispetto ai sin-

goli classificatori LSTM. Inoltre, l’insieme di LSTM fornisce un rilevatore

SMM pi affidabile rispetto a ogni singolo classificatore LSTM riducendo la

variabilit dei risultati.

Il problema della mancanza di dati etichettati nelle applicazioni cliniche

dei sensori indossabili viene affrontato ridefinendo il problema di rileva-

mento dei movimenti anomali in un paradigma di rilevamento della novit

utilizzando il metodo di modellazione normativa profonda. A tal fine, i

movimenti normali eterogenei nei pazienti con PD e ASD sono modellati

utilizzando un autoencoder di denoising probabilistico. Quindi il modello

normativo risultante viene utilizzato per rilevare FOG e SMM in pazienti

con PD e ASD. I risultati sperimentali su tre set di dati di riferimento

illustrano l’efficacia del metodo proposto, che sovraperforma il popolare

one-class SVM e gli approcci di rilevamento della novit basati sulla ri-

costruzione. Inoltre il metodo di rilevamento delle novit completamente

non supervisionato proposto ha raggiunto una performance relativamente

vicina alle sue controparti supervisionate.

Le possibili direzioni future da questa tesi si possono riassumere come

segue:

1. Valutare i nostri metodi di apprendimento profondi su un

ampio set di dati raccolti in condizioni realistiche: in questa

tesi, i metodi di apprendimento approfondito sono addestrati e val-

utati su diversi set di dati IMU benchmark raccolti da pazienti con

ASD e PD in condizioni cliniche controllate. Per garantire la general-

izzazione attraverso i set di dati del mondo reale, necessario valutare

i metodi proposti sui grandi set di dati IMU raccolti da pazienti in
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ambienti meno controllati.

2. Un’implementazione in tempo reale del sistema di rileva-

mento dei movimenti anomali: il metodo di modellazione nor-

mativa profonda proposto offre la possibilit di modellare i normali

dati del movimento umano durante le attivit della vita quotidiana

senza la necessit di avere accesso ai campioni etichettati. Inoltre,

questo metodo ha la bassa complessit computazionale che lo rende un

metodo appropriato da implementare nel rilevamento dei movimenti

di rilevamento anormale in tempo reale nei pazienti neuro-evolutivi e

neuro-degenerativi.

3. Incorporando i dati fisiologici per prevedere i movimenti anor-

mali: Sebbene i sensori IMU siano adatti per il rilevamento anor-

male del movimento nei pazienti con ASD e PD, i dati raccolti uti-

lizzando questi sensori non forniscono sempre informazioni adeguate

per ottenere una valutazione affidabile dei movimenti anomali di im-

postazioni cliniche. Ad esempio, a volte difficile rilevare da soli i

dati IMU se una lentezza del movimento dovuta alla bradicinesia o a

causa di affaticamento, ansia o altri fattori ambientali. Poich i cam-

biamenti nei comportamenti fisiologici possono verificarsi durante e

prima dell’inizio di movimenti anormali, quindi il monitoraggio e la

rilevazione di questi cambiamenti possono aiutare ad avere prestazioni

di rilevamento dei movimenti anormali pi elevate. L’incorporazione dei

dati fisiologici acquisiti mediante elettrocardiografia (ECG) e sensori

elettromiografici (EMG) nel sistema di rilevamento fornisce la pos-

sibilit di prevedere l’insorgenza di movimenti anormali piuttosto che

rilevarli.
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Het ontwikkelen van een real-time mobiele applicatie voor het detecteren

van abnormale bewegingen bij PD- en ASS-patinten kan worden beschouwd

als een ultiem doel in het kader van automatische abnormale bewegings-

detectie met behulp van draagbare sensoren. Het ontwikkelen van een

dergelijke toepassing die stapsgewijs kan worden aangepast aan de gegevens

van nieuwe patinten of aan dezelfde patint als zijn / haar kinematica in de

praktijk veranderen, kan zowel onderzoeksstudies vooruit helpen als nieuwe

interventietools bieden die onderzoekers, clinici en zorgverleners helpen.

voortdurend monitoren, beter begrijpen en omgaan met abnormaal gedrag

bij ASS- en PD-patinten. Het bereiken van dit doel is echter een uitdag-

ing vanwege de grote inter- en intra-subject variabiliteit in de verkregen

IMU-gegevens en die geen toegang hebben tot de labels van verzamelde

gegevens in real-life settings. De belangrijkste focus van het onderzoek

gepresenteerd in dit proefschrift was het aanpakken van deze specifieke

uitdagingen in automatische abnormale bewegingsdetectie.

In dit proefschrift wordt het probleem van inter- en intra-subject vari-

abiliteit aangetast door het gebruik van feature learning en transfer learn-

ing mogelijkheden van diepe neurale netwerken. In het bijzonder wordt

een nieuwe toepassing van CNN voorgesteld om een middenrepresentatie

van IMU-signalen bij personen met ASS te leren. De voorgestelde ar-

chitectuur wordt verder gebruikt om de kennis over te dragen, geleerd

van de ene SMM-dataset naar een andere dataset via de netwerkinitial-
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isatie in een longitudinaal scenario. De experimentele resultaten op een

gesimuleerde en twee echte datasets geven aan dat i) het vervangen van

handgemaakte functies door automatische functieleren met behulp van

CNN resulteert in meer onderscheidende en robuuste functies in scenario’s

voor verschillende onderwerps SMM-detectie; en ii) leren van parame-

teroverdracht verbetert de aanpasbaarheid en verbetert als gevolg daarvan

de prestaties van het SMM-detectiesysteem wanneer toegepast op nieuw

geziene gegevensverzameling in een longitudinale instelling. Hoewel het

voorgestelde diepe neurale netwerk een nauwkeurig SMM-detectiemodel

biedt, is het voorgestelde volledig gecontroleerde schema voor het trainen

van het SMM-detectiemodel problematisch in de aanpassing in de werkeli-

jke tijd aangezien de aanpassing aan nieuwe ongeziene gegevens alleen op

basis van de niet-gelabelde gegevens moet worden uitgevoerd. Deze beperk-

ing motiveert toekomstige onderzoeken naar de online aanpassing van het

systeem op een onbewaakte manier. Transcendent transfer learning met de

mogelijkheid van incrementele training kan mogelijk de online aanpassing

van een automatische abnormale bewegingsdetector in real-time scenario’s

vergemakkelijken.

Om meer te profiteren van de temporele fluctuaties van IMU-signalen,

wordt een combinatie van LSTM’s met een CNN-architectuur voorgesteld

om de dynamische kenmerken van een reeks IMU-signalen te leren. De

experimentele resultaten demonstreren i) het gebruik van de temporele in-

formatie verbetert de scheidbaarheid van SMM- en niet-SMM-monsters;

ii) terwijl de scheefheid van de monsters een negatieve invloed heeft op

de prestaties van de SMM-detector in de ruimte met statische elementen,

herstelt het gebruik van de temporele patronen van IMU-signalen met

meerdere sensoren de prestaties. Het leren van temporele informatie van

IMU-signalen vergemakkelijkt dus de toepassing van SMM-detectie in meer

realistische omgevingen waarin de binnenkomende monsters sterk scheef
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staan. Bovendien wordt, om de betrouwbaarheid en stabiliteit van de

SMM-detector te verbeteren, een algoritme voor het leren van een ensem-

ble op basis van de beste LSTM-leerders voorgesteld. De experimentele

resultaten laten een lichte verbetering zien in de gemiddelde prestaties

vergeleken met enkele LSTM classifiers. Bovendien biedt het ensemble

van LSTM’s een betrouwbaardere SMM-detector in vergelijking met elke

afzonderlijke LSTM-classificatie door de variabiliteit van de resultaten te

verminderen.

Het probleem van het ontbreken van gelabelde gegevens in klinische

toepassingen van draagbare sensoren wordt aangepakt door het abnor-

male bewegingsdetectietekort opnieuw te definiren in een nieuwheidsdetec-

tieparadigma met behulp van de diepe normatieve modelleringsmethode.

Hiertoe worden heterogene normale bewegingen bij PD- en ASS-patinten

gemodelleerd met behulp van een probabilistische denoising autoencoder.

Vervolgens wordt het resulterende normatieve model gebruikt om FOG’s

en SMM’s te detecteren bij respectievelijk PD- en ASS-patinten. De exper-

imentele resultaten op drie benchmarkgegevensverzamelingen illustreren de

effectiviteit van de voorgestelde methode, die beter presteert dan SVM van

n klasse en de op reconstructie gebaseerde nieuwe detectiewerkwijzen. De

voorgestelde volledig unsupervised nieuwheidsdetectiewerkwijze bereikte

een vrij dichte prestaties aan zijn gecontroleerde tegenhangers.

Mogelijke toekomstige richting uit dit proefschrift kan als volgt worden

samengevat:

1. Onze diepe leermethoden evalueren op een grote dataset

verzameld in de realistische omstandigheden: In dit proef-

schrift worden de deep learning-methoden getraind en gevalueerd op

verschillende benchmark-IMU-gegevensverzamelingen verzameld door

ASS- en PD-patinten onder gecontroleerde klinische omstandigheden.

Om de generalisatie tussen real-world datasets te verzekeren, is het
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noodzakelijk om de voorgestelde methoden te evalueren op de grote

IMU-datasets die zijn verzameld van patinten in ongecontroleerde en

wilde, real-life omgevingen.

2. Een real-time implementatie van een abnormaal bewegings-

detectiesysteem: de voorgestelde methode voor diepe normatieve

modellering biedt de mogelijkheid om de normale menselijke beweg-

ingsgegevens te modelleren tijdens activiteiten in het dagelijks leven

zonder de noodzaak van toegang tot gelabelde monsters. Bovendien

heeft deze methode de lage rekenkundige complexiteit waardoor het

een geschikte methode is om te worden gemplementeerd in de real-

time abnormale detectie bewegingsdetectie bij neuro-ontwikkelings-

en neurodegeneratieve patinten.

3. Fysiologische gegevens opnemen om abnormale bewegingen

te voorspellen: Hoewel IMU-sensoren zeer geschikt zijn voor de ab-

normale bewegingsdetectie bij ASS- en PD-patinten, bieden de verza-

melde gegevens met behulp van deze sensoren niet altijd voldoende

informatie om een betrouwbare beoordeling te krijgen van de abnor-

male bewegingen van medische instellingen. Het is bijvoorbeeld soms

moeilijk om alleen uit de IMU-gegevens te detecteren of een traagheid

van beweging te wijten is aan bradykinesie of als een resultaat van

vermoeidheid, angst of andere omgevingsfactoren. Aangezien veran-

deringen in fysiologisch gedrag kunnen optreden tijdens en vr het be-

gin van abnormale bewegingen, kan het monitoren en detecteren van

deze veranderingen bijdragen tot een hogere abnormale bewegings-

detectiewerking. Het opnemen van fysiologische gegevens vastgelegd

door elektrocardiografie (ECG) en elektromyografische (EMG) sen-

soren in het detectiesysteem biedt de mogelijkheid om het begin van

abnormale bewegingen te voorspellen in plaats van ze alleen te de-



Conclusies

tecteren.
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