215 research outputs found
Switching Mechanism in Single-Layer Molybdenum Disulfide Transistors: an Insight into Current Flow across Schottky Barriers
In this article, we study the properties of metal contacts to single-layer
molybdenum disulfide (MoS2) crystals, revealing the nature of switching
mechanism in MoS2 transistors. On investigating transistor behavior as contact
length changes, we find that the contact resistivity for metal/MoS2 junctions
is defined by contact area instead of contact width. The minimum gate dependent
transfer length is ~0.63 {\mu}m in the on-state for metal (Ti) contacted
single-layer MoS2. These results reveal that MoS2 transistors are Schottky
barrier transistors, where the on/off states are switched by the tuning the
Schottky barriers at contacts. The effective barrier heights for source and
drain barriers are primarily controlled by gate and drain biases, respectively.
We discuss the drain induced barrier narrowing effect for short channel
devices, which may reduce the influence of large contact resistance for MoS2
Schottky barrier transistors at the channel length scaling limit.Comment: ACS Nano, ASAP (2013
Line Defects in Molybdenum Disulfide Layers
Layered molecular materials and especially MoS2 are already accepted as
promising candidates for nanoelectronics. In contrast to the bulk material, the
observed electron mobility in single-layer MoS2 is unexpectedly low. Here we
reveal the occurrence of intrinsic defects in MoS2 layers, known as inversion
domains, where the layer changes its direction through a line defect. The line
defects are observed experimentally by atomic resolution TEM. The structures
were modeled and the stability and electronic properties of the defects were
calculated using quantum-mechanical calculations based on the
Density-Functional Tight-Binding method. The results of these calculations
indicate the occurrence of new states within the band gap of the semiconducting
MoS2. The most stable non-stoichiometric defect structures are observed
experimentally, one of which contains metallic Mo-Mo bonds and another one
bridging S atoms
How User‐centric Innovation is Affecting Stakeholder Marketing Strategies: Exploratory Findings from the Music Industry
This paper empirically explores how user‐centric innovation (UCI) in the music industry is affecting how key stakeholder groups are approaching and developing their marketing (and associated management) strategies. The three‐stage interview‐based research methodology consisted of 52 semi‐structured in‐depth interviews with UCI experts and artist managers, as well as representatives from major record labels. The findings make four substantial contributions to theory and practice in the interrelated fields of UCI, marketing and the music industry. First, they provide practical and pragmatic insights for industry practitioners on how different UCI marketing approaches are affecting their management strategies. Second, they take steps towards answering many of the identified gaps in research and knowledge relating to the concept of UCI. Third, they present theoretical models as a foundation for which new UCI marketing theory can be built upon. Last, they offer directions for future research to advance our empirical findings.</jats:p
In situ edge engineering in two-dimensional transition metal dichalcogenides
Exerting synthetic control over the edge structure and chemistry of two-dimensional (2D) materials is of critical importance to direct the magnetic, optical, electrical, and catalytic properties for specific applications. Here, we directly image the edge evolution of pores in Mo1-xWxSe2 monolayers via atomic-resolution in situ scanning transmission electron microscopy (STEM) and demonstrate that these edges can be structurally transformed to theoretically predicted metastable atomic configurations by thermal and chemical driving forces. Density functional theory calculations and ab initio molecular dynamics simulations explain the observed thermally induced structural evolution and exceptional stability of the four most commonly observed edges based on changing chemical potential during thermal annealing. The coupling of modeling and in situ STEM imaging in changing chemical environments demonstrated here provides a pathway for the predictive and controlled atomic scale manipulation of matter for the directed synthesis of edge configurations in Mo-1_xWxSe2 to achieve desired functionality
Degradation behaviors and mechanisms of MoS2 crystals relevant to bioabsorbable electronics
Monolayer molybdenum disulfide (MoS2) exhibits unique semiconducting and bioresorption properties, giving this material enormous potential for electronic/biomedical applications, such as bioabsorbable electronics. In this regard, understanding the degradation performance of monolayer MoS2 in biofluids allows modulation of the properties and lifetime of related bioabsorbable devices and systems. Herein, the degradation behaviors and mechanisms of monolayer MoS2 crystals with different misorientation angles are explored. High-angle grain boundaries (HAGBs) biodegrade faster than low-angle grain boundaries (LAGBs), exhibiting degraded edges with wedge and zigzag shapes, respectively. Triangular pits that formed in the degraded grains have orientations opposite to those of the parent crystals, and these pits grow into larger pits laterally. These behaviors indicate that the degradation is induced and propagated based on intrinsic defects, such as grain boundaries and point defects, because of their high chemical reactivity due to lattice breakage and the formation of dangling bonds. High densities of dislocations and point defects lead to high chemical reactivity and faster degradation. The structural cause of MoS2 degradation is studied, and a feasible approach to study changes in the properties and lifetime of MoS2 by controlling the defect type and density is presented. The results can thus be used to promote the widespread use of two-dimensional materials in bioabsorption applications
Engineering grain boundaries at the 2D limit for the hydrogen evolution reaction
Atom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs
Large area chemical vapour deposition grown transition metal dichalcogenide monolayers automatically characterized through photoluminescence imaging
Chemical vapour deposition (CVD) growth is capable of producing multiple single-crystal islands of atomically thin transition metal dichalcogenides (TMDs) over large areas. Subsequent merging of perfectly epitaxial domains can lead to single-crystal monolayer sheets, a step towards scalable production of high quality TMDs. For CVD growth to be effectively harnessed for such production it is necessary to be able to rapidly assess the quality of material across entire large area substrates. To date, characterisation has been limited to sub-0.1-mm2 areas, where the properties measured are not necessarily representative of an entire sample. Here, we apply photoluminescence (PL) imaging and computer vision techniques to create an automated analysis for large area samples of monolayer TMDs, measuring the properties of island size, density of islands, relative PL intensity and homogeneity, and orientation of triangular domains. The analysis is applied to ×20 magnification optical microscopy images that completely map samples of WSe2 on hBN, 5.0 mm × 5.0 mm in size, and MoSe2–WS2 on SiO2/Si, 11.2 mm × 5.8 mm in size. Two prevailing orientations of epitaxial growth were observed in WSe2 grown on hBN and four predominant orientations were observed in MoSe2, initially grown on c-plane sapphire. The proposed analysis will greatly reduce the time needed to study freshly synthesised material over large area substrates and provide feedback to optimise growth conditions, advancing techniques to produce high quality TMD monolayer sheets for commercial applications
- …