257 research outputs found

    The X-linked Mental Retardation Protein OPHN1 Interacts with Homer1b/c to Control Spine Endocytic Zone Positioning and Expression of Synaptic Potentiation

    Get PDF
    At glutamatergic synapses, local endocytic recycling of AMPA receptors (AMPARs) is important for the supply of a mobile pool of AMPARs required for synaptic potentiation. This local recycling of AMPARs critically relies on the presence of an endocytic zone (EZ) near the postsynaptic density (PSD). The precise mechanisms that couple the EZ to the PSD still remain largely elusive, with the large GTPase Dynamin-3 and the multimeric PSD adaptor protein Homer1 as the two main players identified. Here, we demonstrate that a physical interaction between the X-linked mental retardation protein oligophrenin-1 (OPHN1) and Homer1b/c is crucial for the positioning of the EZ adjacent to the PSD, and present evidence that this interaction is important for OPHN1's role in controlling activity-dependent strengthening of excitatory synapses in the rat hippocampus. Disruption of the OPHN1-Homer1b/c interaction causes a displacement of EZs from the PSD, along with impaired AMPAR recycling and reduced AMPAR accumulation at synapses, in both basal conditions and conditions that can induce synaptic potentiation. Together, our findings unveil a novel role for OPHN1 as an interaction partner of Homer1b/c in spine EZ positioning, and provide new mechanistic insight into how genetic deficits in OPHN1 can lead to impaired synapse maturation and plasticity

    Oral Long-Term Complications of Allogeneic Haematopoietic Stem Cell Transplantation

    Get PDF
    INTRODUCTION: Kinesin superfamily (KIF) genes encode motor proteins that have fundamental roles in brain functioning, development, survival and plasticity by regulating the transport of cargo along microtubules within axons, dendrites and synapses. Mouse knockout studies support these important functions in the nervous system. The role of KIF genes in intellectual disability (ID) has so far received limited attention, although previous studies have suggested that many ID genes impinge on synaptic function. METHODS: By applying next-generation sequencing (NGS) in ID patients, we identified likely pathogenic mutations in KIF4A and KIF5C. To further confirm the pathogenicity of these mutations, we performed functional studies at the level of synaptic function in primary rat hippocampal neurons. RESULTS AND CONCLUSIONS: Four males from a single family with a disruptive mutation in the X-linked KIF4A (c.1489-8_1490delins10; p.?- exon skipping) showed mild to moderate ID and epilepsy. A female patient with a de novo missense mutation in KIF5C (c.11465A>C; p.(Glu237Lys)) presented with severe ID, epilepsy, microcephaly and cortical malformation. Knock-down of Kif4a in rat primary hippocampal neurons altered the balance between excitatory and inhibitory synaptic transmission, whereas the mutation in Kif5c affected its protein function at excitatory synapses. Our results suggest that mutations in KIF4A and KIF5C cause ID by tipping the balance between excitatory and inhibitory synaptic excitability

    Neuronal network dysfunction in a model for Kleefstra syndrome mediated by enhanced NMDAR signaling

    Get PDF
    Kleefstra syndrome (KS) is a neurodevelopmental disorder caused by mutations in the histone methyltransferase EHMT1. To study the impact of decreased EHMT1 function in human cells, we generated excitatory cortical neurons from induced pluripotent stem (iPS) cells derived from KS patients. Neuronal networks of patient-derived cells exhibit network bursting with a reduced rate, longer duration, and increased temporal irregularity compared to control networks. We show that these changes are mediated by upregulation of NMDA receptor (NMDAR) subunit 1 correlating with reduced deposition of the repressive H3K9me2 mark, the catalytic product of EHMT1, at the GRIN1 promoter. In mice EHMT1 deficiency leads to similar neuronal network impairments with increased NMDAR function. Finally, we rescue the KS patient-derived neuronal network phenotypes by pharmacological inhibition of NMDARs. Summarized, we demonstrate a direct link between EHMT1 deficiency and NMDAR hyperfunction in human neurons, providing a potential basis for more targeted therapeutic approaches for KS

    Different genes interact with particulate matter and tobacco smoke exposure in affecting lung function decline in the general population

    Get PDF
    BACKGROUND: Oxidative stress related genes modify the effects of ambient air pollution or tobacco smoking on lung function decline. The impact of interactions might be substantial, but previous studies mostly focused on main effects of single genes. OBJECTIVES: We studied the interaction of both exposures with a broad set of oxidative-stress related candidate genes and pathways on lung function decline and contrasted interactions between exposures. METHODS: For 12679 single nucleotide polymorphisms (SNPs), change in forced expiratory volume in one second (FEV(1)), FEV(1) over forced vital capacity (FEV(1)/FVC), and mean forced expiratory flow between 25 and 75% of the FVC (FEF(25-75)) was regressed on interval exposure to particulate matter >10 microm in diameter (PM10) or packyears smoked (a), additive SNP effects (b), and interaction terms between (a) and (b) in 669 adults with GWAS data. Interaction p-values for 152 genes and 14 pathways were calculated by the adaptive rank truncation product (ARTP) method, and compared between exposures. Interaction effect sizes were contrasted for the strongest SNPs of nominally significant genes (p(interaction)>0.05). Replication was attempted for SNPs with MAF<10% in 3320 SAPALDIA participants without GWAS. RESULTS: On the SNP-level, rs2035268 in gene SNCA accelerated FEV(1)/FVC decline by 3.8% (p(interaction) = 2.5x10(-6)), and rs12190800 in PARK2 attenuated FEV1 decline by 95.1 ml p(interaction) = 9.7x10(-8)) over 11 years, while interacting with PM10. Genes and pathways nominally interacting with PM10 and packyears exposure differed substantially. Gene CRISP2 presented a significant interaction with PM10 (p(interaction) = 3.0x10(-4)) on FEV(1)/FVC decline. Pathway interactions were weak. Replications for the strongest SNPs in PARK2 and CRISP2 were not successful. CONCLUSIONS: Consistent with a stratified response to increasing oxidative stress, different genes and pathways potentially mediate PM10 and tobac smoke effects on lung function decline. Ignoring environmental exposures would miss these patterns, but achieving sufficient sample size and comparability across study samples is challengin

    Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis.

    Get PDF
    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO\u2082, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV\u2081) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 \u3bcg\ub7m(-3) increase in NO\u2082 exposure was associated with lower levels of FEV\u2081 (-14.0 mL, 95% CI -25.8 to -2.1) and FVC (-14.9 mL, 95% CI -28.7 to -1.1). An increase of 10 \u3bcg\ub7m(-3) in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV\u2081 (-44.6 mL, 95% CI -85.4 to -3.8) and FVC (-59.0 mL, 95% CI -112.3 to -5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe

    Clinical patterns in asthma based on proximal and distal airway nitric oxide categories

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The exhaled nitric oxide (eNO) signal is a marker of inflammation, and can be partitioned into proximal [J'aw<sub>NO </sub>(nl/s), maximum airway flux] and distal contributions [CA<sub>NO </sub>(ppb), distal airway/alveolar NO concentration]. We hypothesized that J'aw<sub>NO </sub>and CA<sub>NO </sub>are selectively elevated in asthmatics, permitting identification of four inflammatory categories with distinct clinical features.</p> <p>Methods</p> <p>In 200 consecutive children with asthma, and 21 non-asthmatic, non-atopic controls, we measured baseline spirometry, bronchodilator response, asthma control and morbidity, atopic status, use of inhaled corticosteroids, and eNO at multiple flows (50, 100, and 200 ml/s) in a cross-sectional study design. A trumpet-shaped axial diffusion model of NO exchange was used to characterize J'aw<sub>NO </sub>and CA<sub>NO</sub>.</p> <p>Results</p> <p>J'aw<sub>NO </sub>was not correlated with CA<sub>NO</sub>, and thus asthmatic subjects were grouped into four eNO categories based on upper limit thresholds of non-asthmatics for J'aw<sub>NO </sub>(≥ 1.5 nl/s) and CA<sub>NO </sub>(≥ 2.3 ppb): Type I (normal J'aw<sub>NO </sub>and CA<sub>NO</sub>), Type II (elevated J'aw<sub>NO </sub>and normal CA<sub>NO</sub>), Type III (elevated J'aw<sub>NO </sub>and CA<sub>NO</sub>) and Type IV (normal J'aw<sub>NO </sub>and elevated CA<sub>NO</sub>). The rate of inhaled corticosteroid use (lowest in Type III) and atopy (highest in Type II) varied significantly amongst the categories influencing J'aw<sub>NO</sub>, but was not related to CA<sub>NO</sub>, asthma control or morbidity. All categories demonstrated normal to near-normal baseline spirometry; however, only eNO categories with increased CA<sub>NO </sub>(III and IV) had significantly worse asthma control and morbidity when compared to categories I and II.</p> <p>Conclusions</p> <p>J'aw<sub>NO </sub>and CA<sub>NO </sub>reveal inflammatory categories in children with asthma that have distinct clinical features including sensitivity to inhaled corticosteroids and atopy. Only categories with increase CA<sub>NO </sub>were related to poor asthma control and morbidity independent of baseline spirometry, bronchodilator response, atopic status, or use of inhaled corticosteroids.</p

    Adherence to inhaled corticosteroids and long-acting β2-agonists in asthma:A MASK-air study

    Get PDF
    Introduction Adherence to controller medication is a major problem in asthma management, being difficult to assess and tackle. mHealth apps can be used to assess adherence. We aimed to assess the adherence to inhaled corticosteroids+long-acting β2-agonists (ICS+LABA) in users of the MASK-air® app, comparing the adherence to ICS+formoterol (ICS+F) with that to ICS+other LABA. Materials and methods We analysed complete weeks of MASK-air® data (2015-2022; 27 countries) from patients with self-reported asthma and ICS+LABA use. We compared patients reporting ICS+F versus ICS+other LABA on adherence levels, symptoms and symptom-medication scores. We built regression models to assess whether adherence to ICS+LABA was associated with asthma control or short-acting beta-agonist (SABA) use. Sensitivity analyses were performed considering the weeks with no more than one missing day. Results In 2598 ICS+LABA users, 621 (23.9%) reported 4824 complete weeks and 866 (33.3%) reported weeks with at most one missing day. Higher adherence (use of medication ≥80% of weekly days) was observed for ICS+other LABA (75.1%) when compared to ICS+F (59.3%), despite both groups displaying similar asthma control and work productivity. The ICS+other LABA group was associated with more days of SABA use than the ICS+F group (median=71.4% versus 57.1% days). Each additional weekly day of ICS+F use was associated with a 4.1% less risk in weekly SABA use (95%CI=-6.5;-1.6%;p=0.001). For ICS+other LABA, the percentage was 8.2 (95%CI=-11.6;-5.0%;p<0.001). Conclusions In asthma patients adherent to the MASK-air app, adherence to ICS+LABA was high. ICS+F users reported lower adherence but also a lower SABA use and a similar level of control

    CNF1 Improves Astrocytic Ability to Support Neuronal Growth and Differentiation In vitro

    Get PDF
    Modulation of cerebral Rho GTPases activity in mice brain by intracerebral administration of Cytotoxic Necrotizing Factor 1 (CNF1) leads to enhanced neurotransmission and synaptic plasticity and improves learning and memory. To gain more insight into the interactions between CNF1 and neuronal cells, we used primary neuronal and astrocytic cultures from rat embryonic brain to study CNF1 effects on neuronal differentiation, focusing on dendritic tree growth and synapse formation, which are strictly modulated by Rho GTPases. CNF1 profoundly remodeled the cytoskeleton of hippocampal and cortical neurons, which showed philopodia-like, actin-positive projections, thickened and poorly branched dendrites, and a decrease in synapse number. CNF1 removal, however, restored dendritic tree development and synapse formation, suggesting that the toxin can reversibly block neuronal differentiation. On differentiated neurons, CNF1 had a similar effacing effect on synapses. Therefore, a direct interaction with CNF1 is apparently deleterious for neurons. Since astrocytes play a pivotal role in neuronal differentiation and synaptic regulation, we wondered if the beneficial in vivo effect could be mediated by astrocytes. Primary astrocytes from embryonic cortex were treated with CNF1 for 48 hours and used as a substrate for growing hippocampal neurons. Such neurons showed an increased development of neurites, in respect to age-matched controls, with a wider dendritic tree and a richer content in synapses. In CNF1-exposed astrocytes, the production of interleukin 1β, known to reduce dendrite development and complexity in neuronal cultures, was decreased. These results demonstrate that astrocytes, under the influence of CNF1, increase their supporting activity on neuronal growth and differentiation, possibly related to the diminished levels of interleukin 1β. These observations suggest that the enhanced synaptic plasticity and improved learning and memory described in CNF1-injected mice are probably mediated by astrocytes

    Adult onset asthma and interaction between genes and active tobacco smoking: The GABRIEL consortium.

    Get PDF
    BACKGROUND: Genome-wide association studies have identified novel genetic associations for asthma, but without taking into account the role of active tobacco smoking. This study aimed to identify novel genes that interact with ever active tobacco smoking in adult onset asthma. METHODS: We performed a genome-wide interaction analysis in six studies participating in the GABRIEL consortium following two meta-analyses approaches based on 1) the overall interaction effect and 2) the genetic effect in subjects with and without smoking exposure. We performed a discovery meta-analysis including 4,057 subjects of European descent and replicated our findings in an independent cohort (LifeLines Cohort Study), including 12,475 subjects. RESULTS: First approach: 50 SNPs were selected based on an overall interaction effect at p<10-4. The most pronounced interaction effect was observed for rs9969775 on chromosome 9 (discovery meta-analysis: ORint = 0.50, p = 7.63*10-5, replication: ORint = 0.65, p = 0.02). Second approach: 35 SNPs were selected based on the overall genetic effect in exposed subjects (p <10-4). The most pronounced genetic effect was observed for rs5011804 on chromosome 12 (discovery meta-analysis ORint = 1.50, p = 1.21*10-4; replication: ORint = 1.40, p = 0.03). CONCLUSIONS: Using two genome-wide interaction approaches, we identified novel polymorphisms in non-annotated intergenic regions on chromosomes 9 and 12, that showed suggestive evidence for interaction with active tobacco smoking in the onset of adult asthma

    Maternal hyperleptinemia is associated with male offspring’s altered vascular function and structure in mice

    Get PDF
    Children of mothers with gestational diabetes have greater risk of developing hypertension but little is known about the mechanisms by which this occurs. The objective of this study was to test the hypothesis that high maternal concentrations of leptin during pregnancy, which are present in mothers with gestational diabetes and/or obesity, alter blood pressure, vascular structure and vascular function in offspring. Wildtype (WT) offspring of hyperleptinemic, normoglycemic, Lepr db/+ dams were compared to genotype matched offspring of WT-control dams. Vascular function was assessed in male offspring at 6, and at 31 weeks of age after half the offspring had been fed a high fat, high sucrose diet (HFD) for 6 weeks. Blood pressure was increased by HFD but not affected by maternal hyperleptinemia. On a standard diet, offspring of hyperleptinemic dams had outwardly remodeled mesenteric arteries and an enhanced vasodilatory response to insulin. In offspring of WT but not Leprdb/+ dams, HFD induced vessel hypertrophy and enhanced vasodilatory responses to acetylcholine, while HFD reduced insulin responsiveness in offspring of hyperleptinemic dams. Offspring of hyperleptinemic dams had stiffer arteries regardless of diet. Therefore, while maternal hyperleptinemia was largely beneficial to offspring vascular health under astandard diet, it had detrimental effects in offspring fed HFD. These results suggest that circulating maternal leptin concentrations may interact with other factors in the pre- and post-natal environments to contribute to altered vascular function in offspring of diabetic pregnancie
    • …
    corecore