114 research outputs found

    Characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals

    Get PDF
    Airguns used in seismic surveys are among the most prevalent and powerful anthropogenic noise sources in marine habitats. They are designed to produce most energy below 100 Hz, but the pulses have also been reported to contain medium-to-high frequency components with the potential to affect small marine mammals, which have their best hearing sensitivity at higher frequencies. In shallow water environments, inhabited by many of such species, the impact of airgun noise may be particularly challenging to assess due to complex propagation conditions. To alleviate the current lack of knowledge on the characteristics and propagation of airgun pulses in shallow water with implications for effects on small marine mammals, we recorded pulses from a single airgun with three operating volumes (10 in3, 25 in3 and 40 in3) at six ranges (6, 120, 200, 400, 800 and 1300 m) in a uniform shallow water habitat using two calibrated Reson 4014 hydrophones and four DSG-Ocean acoustic data recorders. We show that airgun pulses in this shallow habitat propagated out to 1300 meters in a way that can be approximated by a 18log(r) geometric transmission loss model, but with a high pass filter effect from the shallow water depth. Source levels were back-calculated to 192 dB re µPa2s (sound exposure level) and 200 dB re 1 µPa dB Leq-fast (rms over 125 ms duration), and the pulses contained substantial energy up to 10 kHz, even at the furthest recording station at 1300 meters. We conclude that the risk of causing hearing damage when using single airguns in shallow waters is small for both pinnipeds and porpoises. However, there is substantial potential for significant behavioral responses out to several km from the airgun, well beyond the commonly used shut-down zone of 500 meters

    AgentSeal : agent-based model describing movement of marine central-place foragers

    Get PDF
    Acknowledgement This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 746602. GA and SB have been partly funded by Gemini Wind park and the NWO (project ALWPP.2017.003). We would like to thank J. Grecian, D. Thomson, M. Fedak, M. Carter, D. Russell, A. Hall, J. Ransijn, H. Vance and M. Civil for help in model design.Peer reviewedPublisher PD

    The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism

    Get PDF
    © 2020, University of Surrey. All rights reserved. The Overview, Design concepts and Details (ODD) protocol for describing Individual-and Agent-Based Models (ABMs) is now widely accepted and used to document such models in journal articles. As a standardized document for providing a consistent, logical and readable account of the structure and dynamics of ABMs, some research groups also find it useful as a workflow for model design. Even so, there are still limitations to ODD that obstruct its more widespread adoption. Such limitations are discussed and addressed in this paper: the limited availability of guidance on how to use ODD; the length of ODD documents; limitations of ODD for highly complex models; lack of sufficient details of many ODDs to enable reimplementation without access to the model code; and the lack of provision for sections in the document structure covering model design ratio-nale, the model’s underlying narrative, and the means by which the model’s fitness for purpose is evaluated. We document the steps we have taken to provide better guidance on: structuring complex ODDs and an ODD summary for inclusion in a journal article (with full details in supplementary material; Table 1); using ODD to point readers to relevant sections of the model code; update the document structure to include sections on model rationale and evaluation. We also further advocate the need for standard descriptions of simulation experiments and argue that ODD can in principle be used for any type of simulation model. Thereby ODD would provide a lingua franca for simulation modelling

    Element concentrations, histology and serum biochemistry of arctic char (Salvelinus alpinus) and shorthorn sculpins (Myoxocephalus scorpius) in northwest Greenland

    Get PDF
    The increasing exploratory efforts in the Greenland mineral industry, and in particular, the proposed rare earth element (REE) mining projects, requires an urgent need to generate data on baseline REE concentrations and their potential environmental impacts. Herein, we have investigated REE concentrations in anadromous Arctic char (Salvelinus alpinus) and shorthorn sculpins (Myoxocephalus scorpius) from uncontaminated sites in Northwest Greenland, along with the relationships between the element concentrations in gills and liver, and gill histology and serum biochemical parameters. Concentrations of arsenic, silver, cadmium, cerium, chromium, copper, dysprosium, mercury, lanthanum, neodymium, lead, selenium, yttrium, and zinc in gills, liver and muscle are presented. No significant statistical correlations were observed between element concentrations in different organs and gill histology or serum biochemical parameters. However, we observed positive relationships between age and histopathology, emphasizing the importance of including age as a co-variable in histological studies of fish. Despite no element-induced effects were observed, this study is considered an important baseline study, which can be used as a reference for the assessment of impacts of potential future REE mine sites in Greenland
    corecore