
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Keeping modelling notebooks with TRACE
Good for you and good for environmental research and management support
Ayllón, D.; Railsback, S.F.; Gallagher, C.; Augusiak, J.; Baveco, H.; Berger, U.; Charles, S.;
Martin, R.; Focks, A.; Galic, N.; Liu, C.; van Loon, E.E.; Nabe-Nielsen, J.; Piou, C.; Polhill,
J.G.; Preuss, T.G.; Radchuk, V.; Schmolke, A.; Stadnicka-Michalak, J.; Thorbek, P.; Grimm,
V.
DOI
10.1016/j.envsoft.2020.104932
Publication date
2021
Document Version
Final published version
Published in
Environmental Modelling and Software
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Ayllón, D., Railsback, S. F., Gallagher, C., Augusiak, J., Baveco, H., Berger, U., Charles, S.,
Martin, R., Focks, A., Galic, N., Liu, C., van Loon, E. E., Nabe-Nielsen, J., Piou, C., Polhill, J.
G., Preuss, T. G., Radchuk, V., Schmolke, A., Stadnicka-Michalak, J., ... Grimm, V. (2021).
Keeping modelling notebooks with TRACE: Good for you and good for environmental
research and management support. Environmental Modelling and Software, 136, [104932].
https://doi.org/10.1016/j.envsoft.2020.104932

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:10 Mar 2023

https://doi.org/10.1016/j.envsoft.2020.104932
https://dare.uva.nl/personal/pure/en/publications/keeping-modelling-notebooks-with-trace(eac8a49d-b27a-4712-af02-99539e5669cd).html
https://doi.org/10.1016/j.envsoft.2020.104932

Environmental Modelling and Software 136 (2021) 104932

Available online 21 November 2020
1364-8152/© 2020 Elsevier Ltd. All rights reserved.

Keeping modelling notebooks with TRACE: Good for you and good for
environmental research and management support

Daniel Ayllón a,*, Steven F. Railsback b, Cara Gallagher c, Jacqueline Augusiak d, Hans Baveco e,
Uta Berger f, Sandrine Charles g, Romina Martin h, Andreas Focks e, Nika Galic i, Chun Liu j,
E. Emiel van Loon k, Jacob Nabe-Nielsen c, Cyril Piou l, J. Gareth Polhill m, Thomas G. Preuss n,
Viktoriia Radchuk o, Amelie Schmolke p, Julita Stadnicka-Michalak q, Pernille Thorbek r,
Volker Grimm s,t

a Complutense University of Madrid (UCM), Faculty of Biology, Department of Biodiversity, Ecology and Evolution, Calle José Antonio Novais 12, 28040, Madrid, Spain
b Lang Railsback & Associates, 250 California Ave., Arcata, CA, 95521, USA
c Department of Bioscience, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
d Charles River Laboratories Den Bosch B.V., Dept. of Discovery and Environmental Sciences, Hambakenwetering 7, 5231 DD, ’s-Hertogenbosch, the Netherlands
e Wageningen Environmental Research, Wageningen University & Research, Droevendaalsesteeg 3a, 6708PB, Wageningen, the Netherlands
f TU Dresden, Institute of Forest Growth and Computer Sciences, Pienner Straße 8, 01737, Tharandt, Germany
g Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie - Biologie Evolutive, 43 boulevard du 11 novembre 1918, F-69622, Villeurbanne
Cedex, France
h Stockholm Resilience Centre, Stockholm University, 10691, Stockholm, Sweden
i Syngenta Crop Protection LLC., Greensboro, NC, 27408, USA
j Syngenta, Herbicide Bioscience, Jealott’s Hill International Research Centre, Bracknell, RG42 6EY, UK
k Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098, XH Amsterdam, the Netherlands
l CIRAD, UMR CBGP, INRA, IRD, Montpellier SupAgro, Univ. Montpellier, F-34398, Montpellier, France
m The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK
n Bayer AG, Alfred Nobel Str. 50, 40789, Monheim, Germany
o Leibniz Institute for Zoo and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, 10315, Berlin, Germany
p Waterborne Environmental, Inc, 897B Harrison Street SE, Leesburg, VA, 20175, USA
q Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
r BASF SE, APD/EE, Speyerer Strasse 2, 67117, Limburgerhof, Germany
s Helmholtz Centre for Environmental Research – UFZ, Permoserstr. 15, 04318, Leipzig, Germany
t University of Potsdam, Institute for Biochemistry and Biology, Maulbeerallee 2, 14469, Potsdam, Germany

A R T I C L E I N F O

Keywords:
Model documentation
Standards
Modelling cycle
Reproducible research
Environmental modelling
Scientific communication

A B S T R A C T

The acceptance and usefulness of simulation models are often limited by the efficiency, transparency, repro-
ducibility, and reliability of the modelling process. We address these issues by suggesting that modellers (1)
“trace” the iterative modelling process by keeping a modelling notebook corresponding to the laboratory
notebooks used by empirical researchers, (2) use a standardized notebook structure and terminology based on
the existing TRACE documentation framework, and (3) use their notebooks to compile TRACE documents that
supplement publications and reports. These practices have benefits for model developers, users, and stake-
holders: improved and efficient model design, analysis, testing, and application; increased model acceptance and
reuse; and replicability and reproducibility of the model and the simulation experiments. Using TRACE termi-
nology and structure in modelling notebooks facilitates production of TRACE documents. We explain the

* Corresponding author.
E-mail addresses: daniel.ayllon@bio.ucm.es (D. Ayllón), Steve@langrailsback.com (S.F. Railsback), cgallagher@bios.au.dk (C. Gallagher), jaugusiak@gmail.com

(J. Augusiak), hans.baveco@wur.nl (H. Baveco), uta.berger@tu-dresden.de (U. Berger), sandrine.charles@univ-lyon1.fr (S. Charles), romina.martin@su.se
(R. Martin), andreas.focks@wur.nl (A. Focks), nika.galic@syngenta.com (N. Galic), chun.liu@syngenta.com (C. Liu), E.E.vanLoon@uva.nl (E.E. van Loon), jnn@
bios.au.dk (J. Nabe-Nielsen), cyril.piou@cirad.fr (C. Piou), gary.polhill@hutton.ac.uk (J.G. Polhill), thomas.preuss1@bayer.com (T.G. Preuss), radchuk@izw-
berlin.de (V. Radchuk), schmolkea@waterborne-env.com (A. Schmolke), julita.stadnicka@eawag.ch (J. Stadnicka-Michalak), pernille.thorbek@basf.com
(P. Thorbek), volker.grimm@ufz.de (V. Grimm).

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2020.104932
Accepted 15 November 2020

mailto:daniel.ayllon@bio.ucm.es
mailto:Steve@langrailsback.com
mailto:cgallagher@bios.au.dk
mailto:jaugusiak@gmail.com
mailto:hans.baveco@wur.nl
mailto:uta.berger@tu-dresden.de
mailto:sandrine.charles@univ-lyon1.fr
mailto:romina.martin@su.se
mailto:andreas.focks@wur.nl
mailto:nika.galic@syngenta.com
mailto:chun.liu@syngenta.com
mailto:E.E.vanLoon@uva.nl
mailto:jnn@bios.au.dk
mailto:jnn@bios.au.dk
mailto:cyril.piou@cirad.fr
mailto:gary.polhill@hutton.ac.uk
mailto:thomas.preuss1@bayer.com
mailto:radchuk@izw-berlin.de
mailto:radchuk@izw-berlin.de
mailto:schmolkea@waterborne-env.com
mailto:julita.stadnicka@eawag.ch
mailto:pernille.thorbek@basf.com
mailto:volker.grimm@ufz.de
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2020.104932
https://doi.org/10.1016/j.envsoft.2020.104932
https://doi.org/10.1016/j.envsoft.2020.104932
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2020.104932&domain=pdf

Environmental Modelling and Software 136 (2021) 104932

2

rationale of TRACE, provide example TRACE documents, and suggest strategies for keeping “TRACE Modelling
Notebooks.”

“The act of writing in the notebook causes the scientist to stop and
think about what is being done in the laboratory. It is in this way an
essential part of ‘doing good science’.” Kanare (1985, p. 1)

1. Introduction

Modelling has become an essential tool for environmental and
ecological research and for management support (e.g., EFSA, 2014;
2018; Stillman et al., 2015; Elsawah et al., 2017; Ayllón et al., 2018;
Badham et al., 2019; Schuwirth et al., 2019). Simulation experiments
are used to explore and understand the behaviour of a model and to
make inferences about the corresponding real system. However, a major
limitation in the current practice of environmental modelling is that
simulation experiments are usually not documented well enough,
particularly for the purpose of relating and discussing insights to man-
agement practice (Schmolke et al., 2010; Schuwirth et al., 2019). Most
of the work testing, evaluating, analysing, and actually using a model
usually remains undocumented, which limits the transparency and
hence credibility of the results while making inefficiencies more likely.

In empirical research, the use of laboratory notebooks to document
experiments is routine and often standardized and demanded by third
parties (Kanare, 1985; Lee, 2003; Nickla and Boehm, 2011), but there is
no such notebook culture for simulation experiments in ecology and
other environmental sciences. This lack is unfortunate because keeping
modelling notebooks is as valuable for simulation experiments as it is for
empirical experiments. Keeping a notebook on a daily basis forces us not
only to document settings and results, but also to write narratives about
what we have learned. Writing by itself improves our science, as pointed
out by the sociologist Niklas Luhmann: “Without writing, one cannot think;
at least not in a sophisticated, connective way” (translated from German).

Many simulation modellers keep some kind of paper or electronic
notebook, but usually at their own discretion, as they are not specifically
trained to maintain these types of records. Consequently, their note-
books are not standardized, often incomplete, and not easily understood
by others or even, after some time, by the notebook keepers themselves.
This situation is regrettable as keeping and using a proper notebook
provides many benefits for both the individual modeller and for envi-
ronmental research and management based on modelling.

First, keeping a record of the whole modelling process contributes to
increased efficiency during model development and when re-using a
model in new applications. Without keeping track of the workflow, the
modelling process often becomes less efficient because resources influ-
encing coding decisions (e.g., web pages, papers, code snippets) are
forgotten, analyses must be repeated, and mistakes, unproductive ap-
proaches, or unsuccessful trials are made or used repeatedly (Grimm
et al., 2014).

Second, modelling notebooks streamline the generation of trans-
parent supporting documentation that facilitates the acceptance and
increases impact of developed models. The design of models and simu-
lation experiments often looks ad hoc because the series of experiments
and thoughts leading to the current design have not been documented
(Schmolke et al., 2010). Without a modelling notebook, early model
design decisions, assessments of model quality and realism, and ratio-
nales for simulation experiment design are hard to document as the
project wraps up. Chances of a model being used for decision support are
considerably increased if the rationale for important assumptions is
transparent and there is documentation of how alternative assumptions
were evaluated.

Third, precise descriptions of model design, analysis, and application
enable reproducible research. Replication or reproduction of published

results can be difficult or even impossible because simulation experi-
ment details have been forgotten or lost. Many studies have recently
drawn attention to problems with model replicability and reproduc-
ibility in computation-based science (Peng, 2011; Sandve et al., 2013;
Donkin et al., 2017; Rougier et al., 2017; Miłkowski et al., 2018; Monks
et al., 2018). Inaccurate or imprecise description of the model, analysis
workflow, or simulation experiments are among the main reasons
published simulation experiments cannot be replicated or reproduced
(Crook et al., 2013; Rougier et al., 2017). Modelling notebooks are an
important tool for avoiding such problems.

Despite these benefits, simulation modellers have not yet developed
a strong culture of keeping notebooks. Moreover, even if such a culture
existed, some of its benefits—increased transparency, reproducibility,
and credibility—would still be limited because they require communi-
cation with others and notebooks contain too much unfiltered infor-
mation to be communicated efficiently. To be useful to a model’s
“clients”, information in the modelling notebook must be filtered and
distilled into a document of appropriate format and detail.

But what is appropriate document format and detail for a useful
summary of a modelling notebook? In fact, there is already a standard
for such documents: TRACE (TRAnsparent and Comprehensive model
Evaludation1; Schmolke et al., 2010; Grimm et al., 2014). TRACE pro-
vides a standardized terminology and structure for compiling, in a
printable document intended for others to use, information about the
formulation, implementation, testing, analysis, evaluation/validation,
and application of ecological and other simulation models. The TRACE
standard keeps modellers from having to invent their own format and
provides guidance on what information is important to include. Stan-
dard formats make communication more efficient and coherent, as we
know from the standard structure of scientific publications and stan-
dards for describing agent-based (the ODD protocol; Grimm et al., 2006,
2010, 2020a; Railsback and Grimm, 2019) or species distribution
models (e.g., Zurell et al., 2020).

Because TRACE already provides a standard format for distilling
information from notebooks, all we need to fully realize the benefits of
both is a way to efficiently link notebooks to TRACE. To provide this link
and therefore (1) facilitate the establishment of a culture of keeping
modelling notebooks and (2) promote a standard for summarizing and
communicating their contents, we propose a standard format for
modelling notebooks that uses TRACE terminology and standards.

There are important differences between TRACE documents and
modelling notebooks. TRACE documents are designed to be published as
supplements to scientific articles or reports (Schmolke et al., 2010;
Grimm et al., 2014), with the goal of making decisions and research
more transparent, robust, and trustworthy (Grimm et al., 2020b). In
contrast, modelling notebooks are primarily for the modellers them-
selves, kept as a routine record of the work conducted during the entire
modelling cycle. But providing the information for a TRACE document is
yet another benefit of keeping a modelling notebook, and this benefit
should be a major consideration in designing the notebook.

We first briefly review and summarize literature on laboratory
notebooks. This provides insight into why and how modelling notebooks
should be kept, but we also discuss important differences between
empirical and simulation experiments and, hence, laboratory and
modelling notebooks. Then we explain TRACE and its rationale, and

1 ‘Evaludation’ merges model evaluation and validation and refers to the
process of assessing the quality of all aspects of a model and its development –
see section 3.

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

3

introduce the corresponding proposed structure of modelling notebooks.
Next, we give general and practical recommendations for keeping

modelling notebooks. Our article particularly targets beginners and ju-
nior modellers, faculty teaching modelling classes, and modellers not in
the habit of keeping notebooks. We therefore provide (1) guidelines
about the kind of notes and details to be included in the modelling
notebook in relation to each TRACE element, (2) general recommen-
dations on keeping the notebook and designing the workflow, and (3)
information on a range of available notebook tools to help modellers
select one appropriate to their experience and skills. Consequently, the
article goes into some detail about the TRACE protocol. Readers inter-
ested in practical instructions on how to use it are directed to section 4.
The experience of those who follow our recommendations is that
keeping a modelling notebook typically takes about 15 min per day.

We conclude with a vision of the future practice and role of
ecological and environmental modelling if a culture of keeping model-
ling notebooks and producing TRACE documents is established.

2. Documenting experiments: laboratory and modelling
notebooks

A laboratory notebook is usually a bound book where the experi-
menter takes notes on the planning, design, execution, analysis, and
interpretation of experiments (Kanare, 1985). Alternative names are
“laboratory journal” or “research journal”. The classical laboratory
notebook contains the purpose of the experiment, all information that is
needed to repeat the experiment, and the data observed (or just the
metadata) or the reference to where these data are stored, and a short
interpretation and comment on the results. Notes should be concise and
clear enough that they can be read and fully understood by others.
Notebook entries form the basis of scientific publications, but they also
describe all kinds of experiments that are not published but nevertheless
important to document, including auxiliary or preparatory experiments
and experiments that failed.

One important function of a modelling notebook is similar to that of a
laboratory notebook: the documentation of experimental procedures
that allows replication and explanation of how experiments were
designed, executed, and interpreted. However, laboratory and model-
ling notebooks differ in various ways. One important difference is the
format. The paper-based laboratory notebook is still the most widely
used form of recording in laboratories worldwide, despite no longer
being the most efficient system because most data generated in labora-
tories is now digital (Dirnagl and Przesdzing, 2016; Kanza et al., 2017).
For modelling notebooks, a paper-based format is inefficient. An elec-
tronic format offers many advantages over the traditional paper note-
book, including: (1) legibility of handwriting is not an issue, (2) sharing
with others is easy, (3) the notebook can be kept in the same (virtual)
place as all other project files, (4) synchronization through the cloud
allows notebooks to be used on multiple devices, (5) documents are
searchable, (6) external files can be directly linked to the notebook, and
(7) graphs, pictures, tables, code, and other documents (e.g., spread-
sheets, PDFs, presentations) can be inserted, cross-referenced, and
annotated.

Another difference between laboratory and modelling notebooks
results from simulation experiments being “ephemeral” compared to
empirical experiments: simulations are usually fast and easily repeated,
in principle. Therefore, simulation experiments can investigate sub-
stantially more factors with substantially more treatments than field or
laboratory experiments (Kleijnen, 2015). Modellers often run thousands
of simulations, so documenting each experimental treatment separately
would be impossible and not meaningful. The task then is not to docu-
ment each experimental treatment, but the overall “design of experi-
ment” (Lorscheid et al., 2012). While empirical research sometimes has
the same challenge (e.g., in automated laboratories), modellers espe-
cially need techniques for documenting large experiments.

While the “design of experiment” approach is straightforward in

systematic, scientific-based analyses such as sensitivity analysis, heu-
ristic analyses are more challenging to document (Railsback and Grimm,
2019, Chapter 22). Heuristic analyses are important steps in initial
testing of model behaviour as well as in robustness analysis (Sect. 4.2.7,
below). Heuristic analyses, often informally referred to as “playing with”
the model, frequently result in important design decisions (just as pre-
liminary experiments do in the empirical laboratory). However, if such
analyses are not documented the design will look ad hoc and may not
convince model users. Recording these heuristic analyses in a notebook
is especially important because details and results of such simulation
experiments are otherwise very likely to be lost; the more flexible and
less well-defined a model analysis, the more important it is to record its
design, results, and consequences.

Besides experimental treatments and results, notebooks should
document the details of the materials and methods used. In modelling,
this means documenting the development of a model, including its
design and underlying rationale. Model development is usually an iter-
ative process that includes starting with simple model versions (“pro-
totypes”), learning from them, and then systematically improving the
model’s design until it is considered realistic enough for its intended
purpose. This “modelling cycle” (Grimm and Railsback, 2005) produces
important details throughout, as we discuss in Sect. 4.1; documenting
these details in a notebook makes iteration through the cycle more
efficient and less subject to errors.

3. Documenting the modelling cycle: model “evaludation” and
the TRACE documentation framework

Modelling notebooks are intended primarily for the modeller’s own
use: they are for recording any information that may be useful later, no
matter how extensive or detailed. The problem we address is that some
but not all of this information is essential for documenting the model’s
usefulness and reliability for future users and decision makers: how do
we determine what information from a modelling notebook needs to be
turned into public documentation, and what format should that docu-
mentation have?

These questions have been answered in the “evaludation” framework
for assessing good modelling practice (Augusiak et al., 2014) and, in
turn, the TRACE model documentation framework (Grimm et al., 2014),
which are both explicitly based on the modelling cycle (Fig. 1). TRACE
was first developed as a standard format for documenting all elements of
iterative model development (“TRAnsparent and Comprehensive
Ecological modelling”; Schmolke et al., 2010). Its purpose was to create
transparency and quality assurance and thereby help decision makers
and other stakeholders understand the conditions under which a simu-
lation model can be used to support their decisions.

In addition to its original purpose as a documentation framework,
TRACE was found to also facilitate good modelling practice. Augusiak
et al. (2014) suggested a new structure and terminology for the
modelling cycle, centred around “evaludation”, defined as “the entire
process of establishing model quality and credibility throughout all
stages of model development, analysis, and application” (Augusiak
et al., 2014, p.121). Grimm et al. (2014) adopted this new terminology
for the current version of TRACE, which now stands for “TRAnsparent
and Comprehensive model Evaludation” and is defined as: “a tool for
planning, performing, and documenting good modelling practice.
TRACE documents should provide convincing evidence that a model was
thoughtfully designed, correctly implemented, thoroughly tested, well
understood, and appropriately used for its intended purpose.” (Grimm
et al., 2014, p.129). This makes the TRACE framework useful as a target
for notebook keeping: knowing that they will create a TRACE document
from their modelling notebooks tells modellers what needs to be
recorded and guides them to produce useful, reproducible simulation
experiments.

TRACE documents are meant to provide comprehensive documen-
tation of models that can be submitted as supplementary material with

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

4

scientific publications, reports, or dossiers where models are presented
to support decision making. TRACE provides a standard format for
organizing and documenting the elements of model evaludation so that
(1) modellers know where to present what kind of information, and (2)
model users and evaluators know exactly where to look for this infor-
mation, guided by tables of contents and executive summaries. At the
same time, TRACE provides a checklist for modellers, which helps them
to make sure that they thoroughly addressed and documented issues that
affect the quality and usefulness of a model. A full TRACE document
consists of eight elements: two elements related to model development
(problem formulation and model description) and six related to model
evaludation, which largely correspond to the elements of the modelling
cycle (Grimm and Railsback, 2005): data evaluation, conceptual model
evaluation, implementation verification, model output verification,
model analysis and model output corroboration (Table 1). The model
analysis element includes the model’s application to its intended pur-
pose, such as answering a research question, evaluating alternative
management scenarios, or assessing environmental risk.

With TRACE as a standard for the modelling cycle documentation

that will be extracted from a notebook, it makes sense to design the
notebook to facilitate distillation of its contents into TRACE. In fact, the
TRACE framework provides a coherent standard format and terminol-
ogy for modelling notebooks, and organizing a modelling notebook
using the TRACE terminology, in turn, makes the compilation of TRACE
documents easier and more efficient. Extracting the information and
data needed to compile a TRACE document is relatively straightforward
if the standardized TRACE terminology is used to tag entries in the
notebook (Schmolke et al., 2010; Augusiak et al., 2014; Grimm et al.,
2014; Fig. 2).

4. Proposed structure of TRACE modelling notebooks

We suggest a TRACE-based approach to keeping modelling note-
books. We first list the types of information that should be entered in a
notebook and then present detailed examples of the information to be
provided for each modelling task in Tables 2 and 3.

Fig. 1. Daily modelling activities are related to the iterative modelling cycle and documented in the modelling notebook. TRACE documentation can be compiled
from the daily notebook entries at any stage of the project, in particular when a publication or report is generated.

Table 1
Structure, terminology, and contents of TRACE documents, and their link to entries in the modelling notebook (MN). The third column, describing the information
provided by each TRACE element, includes literal definitions provided by Grimm et al. (2014).

TRACE element/MN entry
tag

MN keyword Provides supporting information on

1. Problem formulation Model purpose; Research
questions

“The decision-making context in which the model will be used; the types of model clients or stakeholders
addressed; a precise specification of the question(s) that should be answered with the model, including a
specification of necessary model outputs; and a statement of the domain of applicability of the model, including
the extent of acceptable extrapolations.”

2. Model description Model development; Design
decisions

“The model. Provide a detailed written model description. For individual/agent-based and other simulation
models, the ODD protocol is recommended as standard format. For complex submodels it should include concise
explanations of the underlying rationale. Model users should learn what the model is, how it works, and what
guided its design.”

3. Data evaluation Parameterization; Patterns “The quality and sources of numerical and qualitative data used to parameterize the model, both directly and
inversely via calibration, and of the observed patterns that were used to design the overall model structure. This
critical evaluation will allow model users to assess the scope and the uncertainty of the data and knowledge on
which the model is based.”

4. Conceptual model
evaluation

Conceptual design decisions “The simplifying assumptions underlying a model’s design, both with regard to empirical knowledge and general,
basic principles. This critical evaluation allows model users to understand that model design was not ad hoc but
based on carefully scrutinized considerations.”

5. Implementation
verification

Debugging “Whether the computer code implementing the model has been thoroughly tested for programming errors.”
Software verification/Testing “Whether the implemented model performs as indicated by the model description.”
Usability tools design “How the software has been designed and documented to provide necessary usability tools (interfaces,

automation of experiments, etc.) and to facilitate future installation, modification, and maintenance.”
6. Model output

verification
Output verification/Goodness-
of-fit

“How well model output matches observations.”

Calibration; Tests on
environmental drivers

“How much calibration and effects of environmental drivers were involved in obtaining good fits of model output
and data.”

7. Model analysis and
application

Sensitivity analysis; Uncertainty
analysis

“How sensitive model output is to changes in model parameters.”

Robustness analysis; Simulation
experiment

“How well the emergence of model output has been understood.”

8. Model output
corroboration

Output corroboration/Validation “How model predictions compare to independent data and patterns that were not used, and preferably not even
known, while the model was developed, parameterized, and verified. By documenting model output
corroboration, model users learn about evidence which, in addition to model output verification, indicates that
the model is structurally realistic so that its predictions can be trusted to some degree.”

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

5

4.1. What should be in a modelling notebook?

There are several ways of organizing a modelling notebook. Mod-
ellers can employ a fully chronological format analogous to that of the
laboratory notebook, with tags using TRACE terminology and with en-
tries chronological irrespective of their TRACE category (Box 1). Alter-
natively, the notebook can have the same structure as a TRACE
document with entries made chronologically under the relevant TRACE
element. For any organization, it is fundamental to make entries chro-
nological to make the notebook a “master log” of the daily work. (Work
on multiple tasks on the same day should of course be logged with
separate entries.)

Fundamental elements of any modelling notebook are a log of daily,
dated entries reporting what was done on the project and why, and what
was accomplished; and the name, location, and a brief description of all
files relevant to the project (Box 1). An additional important element is a
“to-do” list of both critical issues to be addressed as soon as the task is
resumed and non-critical issues to be addressed when one has time.

Different approaches to producing public documentation are
possible; you can either: (1) document everything in the notebook as you
work, and then later prepare final documents like ODD, TRACE, project
reports, or a software user guide from the notebook; or (2) write those
documents as part of the workflow, entering information directly in
them instead of in the notebook. In the second case, the notebook should
document both (a) where you were working, i.e., what task you worked
on, what document/code and section you worked in, the version of the
document/code that first contained this work and where it was archived,
and what was left to be done or fixed; and (b) any material you did not
save anywhere else, and consider unlikely to be included in a document
but important for staying organized and efficient. It is worth high-
lighting once again that modelling is an iterative process, so modellers
typically switch from task to task and go back to earlier tasks when they
need to modify something. The modelling notebook is important
because it allows and even facilitates such iterative work. Entries should
be written so they contain all the information needed to resume work
efficiently.

Fig. 2. Schematic figure explaining the relation between files in a modelling project, a modelling notebook, and TRACE. Notebook entries are added chronologically
with tags provided by the terminology from the TRACE framework. Standardized tags and keywords, in turn, facilitate the compilation of a TRACE document from
the specific details included in the notebook entries. Entries provide hyperlinks to all files related to a modelling task, indicating their location in the archiving
system; TRACE terminology should also be used to organize and name files and folders.

Box 1
Proposed structure for modelling notebooks.

1. Table of contents. A table with hyperlinks to each entry at the beginning of the notebook. The TOC can be a chronological index with entries
listed by date. In addition to the TOC, it is advisable to include a topical index organized by the tags and keywords in Table 1 to hyperlink each
TRACE element and modelling task to related entries.

2. Master catalogue. A list of the locations of files most relevant to the project, with a description of the file and folder taxonomy.

3. Work log. The main body of the notebook, composed of daily, dated entries. Each entry includes:

(a) General information (common to all entries): (i) date of the entry, (ii) author of the entry, (iii) TRACE tag indicating the TRACE element the
entry is linked to (Table 1), (iv) keyword indicating the specific modelling task within the TRACE element (Table 1), (v) title, (vi) overview of what
has been done and what has been accomplished, and (vii) files linked to the entry (e.g., program code, script used to generate the experiment,
spreadsheet containing parameter values, model input files, output files from experiments, summary files).

(b) Specific details, which depend on the specific modelling task (Tables 2 and 3).

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

6

Tagging the entries in the modelling notebook using TRACE termi-
nology provides the link between the notebook and TRACE documents
(Fig. 2). Lower-level tags (keywords; Table 1) refine the information
about the specific task conducted within TRACE’s broad categories (e.g.,
“sensitivity analysis” within the “model analysis” element); informative,
concise titles can further subdivide and organize entries. This TRACE-
based workflow organization can make a project more efficient even if
a TRACE document is never prepared.

Each entry should start with a general overview of the work done,
before getting into details. It is critical to provide hyperlinks to (or at
least names of) all files related to the entry. The file list should include
the version of the model and its corresponding code, the code and input
files (Box 1), any other relevant files not directly included in the note-
book, and comments on those files. All such files should be archived each
time a substantial task is completed to ensure that the exact files used for
a particular analysis can be extracted from the archive, using the note-
book as an index of the archive. A master catalogue at the beginning of
the notebook should provide an overview of this archive (Box 1).

Finally, the specific details logged in an entry depend on the
modelling task. This information will be rather descriptive for some
tasks (e.g., problem formulation, parameterization, or conceptual model
design), and rather technical for those that involve running simulation
experiments or tests (e.g., calibration, sensitivity analysis, or model
output corroboration). While these details can be incorporated in the
notebook, it will often make more sense to document them in the files
related to the entry. For example: papers from which ideas or data were
extracted can be directly annotated in their PDF; code tests are most
easily documented with notes in the computer files where they were
analysed; the design and analysis of results from simulation experiments
can be documented in the scripts used to run them. If documentation is
kept outside of the notebook, it is essential to write a concise summary of
documentation files: their purposes, how they are used, and where they
are archived. If applicable, external files may also be tagged by their
date of creation or change, to verify their match with the notebook
entry.

To sum up: (1) the notebook is a daily log of your modelling work,
should be based on quick, short and concise notes, and thus is not a
major additional workload; (2) the notebook need not be redundant
with other documents that each describe some of the modelling work,
but rather can be an index of all the work done on each modelling task

and can document material that does not belong elsewhere or will be
intentionally excluded from public documents; (3) whatever you do
every day, log it in the notebook and tag it with TRACE tasks and key-
words; (4) keeping a notebook this way facilitates iterative work; and (5)
the notebook must be a master catalogue of the project’s file archive,
which itself often includes essential documentation.

4.2. Details for specific modelling tasks

In this section, we present details and checklists of the specific in-
formation that should be logged for each task of the modelling cycle,
following the structure and organization of TRACE documents (the
keywords in Table 1 are italicized here). The rationale of each TRACE
category is explained in the text while the specifics of how to fill out the
notebook are in Tables 2 and 3, which also provide examples of specific
kinds of information to log. As explained earlier, information does not
need to be repeated in the modelling notebook if recorded in files and
documents appended and linked to it.

4.2.1. Problem formulation
The first element of TRACE describes the specific research or

decision-making context in which the model is to be employed, with
reference to potential users and the type of audience addressed. This
element also specifies the precise basic or applied question(s) about an
environmental system that could be answered with the model and the
outputs the model will provide to address such questions. The exact
question or problem to be addressed with a model usually changes in
early iterations of the modelling cycle. Sometimes initial questions are
too simple or too complex or too vague, or do not support management
or implementation decisions directly enough. Finding the right ques-
tions is an essential part of any modelling project, and this process must
be carefully documented in the notebook (Table 2).

4.2.2. Model description
A TRACE document includes a complete written description of the

final model, which should enable a full understanding and independent
replication of the model. A “written” description can include equations
and algorithms but is for people who are not necessarily modellers, and
certainly not for computers. Since the ODD protocol (a standard for
describing agent-based and other types of simulation models; Grimm

Table 2
Specific details to be provided in the modelling notebook (MN) or appended files to document problem formulation, model description, data evaluation, and con-
ceptual model evaluation.

TRACE element/MN entry tag Document in the notebook/appended files:

MN keyword

Problem formulation
Research question(s)/Model

purpose
A summary of the background of the modelling project.
Preliminary notes regarding the question, problem, or hypothesis to be addressed, and alternative pathways to solve it.
The relevant outcomes of discussions with teammates, advisors, clients, and stakeholders or other potential end users, and what these outcomes
mean for the further direction of the modelling project.

Model description
Model development Written description of the model’s structure and elements as they are implemented and tested.
Design decision(s) All technical details and data used for tests that contrast alternative model structures or submodel implementations.
Data evaluation
Parameterization/Patterns All data sources, specifying where the data came from, when and where the data were collected, under which conditions, and by whom; thus,

include the literature references or other sources, together with any relevant information that comes with it, e.g. where exactly in a publication or
report you found the data. Often, listing the original data will make sense.
Why any data or information was rejected. This information is important but unlikely to be reported elsewhere.
The exact steps taken (if any procedure or software was used) in preparing data, e.g. all equations and scripts used.
Any (potential) problems with the availability of input data and patterns, or during the parameterization process.

Conceptual model evaluation
Conceptual design decision(s) Description of background information (with references) used to derive the initial conceptual model at the beginning of modelling project.

Any line of thought or literature research that leads or may lead to a specific assumption, working hypothesis, or method used in the model. The
basis for the elements of the conceptual model can be statistical relationships, theories, probabilistic empirical rules based on expert knowledge,
or, most often, elements of existing models addressing similar questions and systems.
The process, during the design of the model’s structure, taken to get to the final decisions, including the choices that were considered but rejected
and why they were.

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

7

et al., 2020a) is recommended to describe models in TRACE documents
(Grimm et al., 2014), the ODD format, or an equivalent comprehensive
format, is also recommended for the notebook. The model description
need not be in the modelling notebook; indeed, it is typically more
convenient to write it in another document and link it to the notebook.
However, the process of model development is typically not reported in
the model description but is important to document. Therefore, a
model’s notebook should describe its main features as they are imple-
mented and tested, including tests of alternative model structures or

submodel implementations (Table 2). The notebook should also docu-
ment the approaches tried and abandoned and why they did not work, so
time is not wasted on them in the future.

4.2.3. Data evaluation
This TRACE element documents the modeller’s assessment of the

quality of quantitative and qualitative data: parameter values, input
data (spatial data, time series), and patterns observed in data; i.e., all
data used for model design, parameterization, calibration, and model

Table 3
Information to be provided in the modelling notebook (MN) or appended files to document implementation verification, model output verification, model analysis, and
model output corroboration.

TRACE element/MN entry tag Document in the notebook/appended files:

MN keyword

Implementation verification
Debugging All debugging tests performed to check for, diagnose, and fix mistakes as the program is written, indicating the code version being debugged, and

describing which hypotheses were made and how they were tested, how data were collected and analysed.
Every significant mistake found in the code and how it was fixed.

Software verification/Testing Every verification test performed on each module/submodel or on the full model, indicating whether the test is conducted on the final or on an
intermediate version of the module/full model, what tests (e.g., stress tests, test programs, statistical analysis of file output, independent
reimplementation of submodels; see Railsback and Grimm, 2019, Chapter 6) are applied, the experiment settings, parameter ranges, and other
technical details. Briefly describe test results and conclusions.
If existing software is used for the analysis of test outputs, its version and exact steps taken need to be documented.

Usability tools design All decisions regarding what results to observe and how (e.g., graphical displays, output files) through the cycle of building, testing, and using the
model.
Tools used to automate simulation experiments (e.g., external libraries, extensions, R packages).
If relevant, design decisions about the format of input files (e.g., time series of environmental variables, maps), runtime-error reporting (e.g., format
and media), and model usability.

Model output verification
Output verification/Goodness-

of-fit
A brief overview of methods or formal tests used to assess model accuracy, and why they were chosen, including literature references. List the
patterns used to verify the outputs of the model (their full description belongs to the “Data Evaluation” element).
A description of quantitative or qualitative criteria used to decide whether a certain pattern was matched by the model.
A summary of how well model outputs matched the patterns used for calibration or model development.
If applicable, a brief overview of the software used to perform the analyses, and steps taken to prepare observed data for the analyses.

Calibration The parameters that were calibrated and the reason why they were chosen for calibration.
How parameters were calibrated, including: (1) whether parameters were calibrated in the sub- or full model, and independently or simultaneously,
(2) the range of values tested for each parameter and method used to sample the entire parameter space, (3) initial conditions and simulation
settings (e.g., simulation length, spatial landscape, time series of environmental drivers, values of non-calibrated parameters), (4) empirical patterns
to be matched by the model, (5) fitting criteria or metrics used to quantify how well the model output matches the data (e.g., sum of squared
standardized errors) and strategy (e.g., best-fit, categorical calibration), and (6) other technical details such as number of replicates of each
parameter set and the software used to implement the parameter space sampling algorithm or to analyse model fit.
A summary of results, including tables and figures if necessary.

Tests on environmental drivers All tests performed to assess the effects of driving environmental factors on goodness-of-fit of model outputs, indicating the default and alternative
settings of tested factors, and how environmental driver input differed from default input (if applicable).

Model analysis and application
Sensitivity analysis Analyses performed to explore the sensitivity of outputs to parameters and other components. Describe which model components (e.g., parameters,

initial conditions, input data, model configuration, submodels) were evaluated for sensitivity, under what conditions, and which outputs were
analysed.
For parameter sensitivity analysis (the most common SA), summarize the experimental design, indicating: (1) whether a local or global analysis was
performed; (2) which parameters were assessed, over what values/ranges, or what parameter space sampling method was used in the case of global
analyses; (3) the analysis technique employed, in detail; (4) settings of the other model components when this information is relevant, and (5) other
technical details, such as number of replicates and the software used for statistical analysis (with links to the relevant files).

Uncertainty analysis Information analogous to that provided for SA, but additionally, for each parameter analysed: (1) the distribution of its values (type, shape, and
distribution parameters) that describes the uncertainty it is believed to have, (2) the source of these probability distributions, and (3) the algorithms
used to draw random parameter values from the distributions. Statistical tests (and software) used to analyse the distribution of model results.

Robustness analysis The purpose and rationale of the simulation experiment(s) performed.
The pattern(s) tested.
The element(s) of the model that were modified, for example whether and how the model’s structure, environmental settings, or process
representation were simplified or made more complex, or whether parameter values were varied and over what ranges.

Model application The purpose and rationale of each simulation experiment. Justification of scenarios tested.
If not fixed between experiments, the model structure and spatial and temporal settings.
Other simulation settings (e.g., time step, simulation length, stop conditions, number of replicates).
The list of model inputs that are varied (e.g., parameters, initial values of state variables, time series of environmental drivers, external maps).
Any regime shifts, events or scheduled model forcing implemented in the simulations (providing information about how those events are scheduled,
at which predefined times, to what values parameter sets/input data are changed, etc.).
The outputs analysed, and analysis methods and results.

Model output corroboration
Output corroboration/

Validation
The empirical observations or theoretical patterns that model results were compared to (including sources, references, etc.).
The simulation settings (e.g., simulation length, spatial configuration, environmental input, initial conditions, parameter values) and number of
replicates performed.
The tests and criteria used to assess whether observations or patterns were reproduced by the model.
If applicable, the software used to perform the analyses, and steps taken to prepare observed data for the analyses.
A brief description of how well model outputs match each pattern, and the consequences of these results for the modelling project.

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

8

output corroboration (Table 2). Note that methods used to inversely
parameterize the model via calibration belong in the “Model Output
Verification” element. Data evaluation allows model users to identify
data sources (e.g., original data, expert knowledge, literature review)
and should provide a direct assessment of data variability and
uncertainty.

4.2.4. Conceptual model evaluation
In this TRACE element, the modeller evaluates the simplifying as-

sumptions underlying a model’s design. This evaluation explicitly lists,
discusses, and justifies in the notebook the model’s most important
conceptual decisions as they are made: selection of entities, relevant
processes and essential structures, spatial and temporal scales, imposed
vs. emergent system properties, use of stochasticity, spatial heteroge-
neity and environmental drivers, etc. (Table 2). The extent to which the
model is built upon existing theories, concepts, or earlier models should
be also documented here.

4.2.5. Implementation verification
This TRACE element is focused on (1) checking the computer code

for errors, bugs, and oversights (debugging), (2) assessing whether the
code actually implements the model as intended or described (software
verification), and (3) documenting how the software’s design (e.g., its
interface, collection and visualization of outputs, automation of simu-
lation experiments, runtime-error reporting; usability tools design)
makes it usable for its purpose. In contrast to the first four elements, the
modelling notebook entries for this and the following elements will be
more technical than descriptive (Table 3).

4.2.6. Model output verification
This TRACE element deals with the evaluation of (1) how well model

outputs reproduce observed patterns (output verification) and (2) the
extent to which calibration and effects of environmental drivers were
involved in obtaining good fits between model outputs and data (cali-
bration and tests on environmental drivers). Model users need to know
how much calibration was involved to make the model reproduce
observed patterns and whether the fulfilment of verification criteria was
driven by an in-depth study of the influence of environmental drivers (e.
g., weather, climatic conditions, chemical disturbances, food availabil-
ity; see Becher et al., 2014 for an example). Thus, calibration and other
formal tests should be fully documented in the modelling notebook or
linked files (Table 3).

4.2.7. Model analysis and application
This TRACE element concerns (1) analysis of output uncertainty and

sensitivity to inputs (uncertainty and sensitivity analysis), and (2) further
analyses (e.g., robustness analysis) to better understand what mecha-
nisms drive key model results. This element also includes model appli-
cation through controlled simulation experiments: using the model to
address its original purpose.

Sensitivity analysis (SA) explores the model’s response to changes in
certain model components—typically parameters, but also input data,
initial conditions, or spatial configuration (Ligmann-Zielinska et al.,
2020). Uncertainty analysis (UA) is to understand how the uncertainty
in parameter values and the model’s sensitivity to parameters interact to
cause uncertainty in model outputs. Therefore, for UA the parameter
values must not only cover the full parameter space but also reproduce
the expected probability distribution of parameters (Railsback and
Grimm, 2019, Chapter 23).

The aim of Robustness Analysis (RA) is to assess how robust the
explanation provided by a model is to major changes in its structure and
parameter values; RA does so by exploring the conditions under which
the model’s ability to explain certain observations breaks down, i.e., a
key pattern is no longer reproduced (Grimm and Berger, 2016). Unlike
SA, RA is not a body of formal techniques but is currently a collection of
heuristics (Grimm and Berger, 2016). Examples of RA are: (1) analysing

unrealistic scenarios that cannot occur in nature or, in general,
“extreme” scenarios; (2) exploring simplified versions of the model or, in
contrast, adding complexity to it; and (3) detecting tipping points within
the parameter space. Because RA is less formalized, it is more important
to record its methods fully.

Of course, a key element of model analysis is documenting the use of
the model for its intended purpose, i.e., model application. Once a model
is complete, it can be applied by different users to different situations,
which leads to the important question of how to keep modelling note-
books and produce TRACE documents when model developers and
model users are not the same persons or organizations. TRACE docu-
ments for different applications of the same model can be identical for
elements concerning model development, while model application ele-
ments differ. For each model application, the TRACE document must be
updated to describe and justify the application’s simulation experi-
ments. A technical solution for doing so is to copy the original document,
give a new name that refers to a new version, and indicate both old text
which refers to earlier applications and new text about the current
application by using different colours. The same solution was suggested
for different versions of ODD model descriptions (Grimm et al., 2020a;
Supplement S4). Alternatively, the TRACE document could be
version-controlled.

All simulation experiments, whether for model exploration, analysis,
or application, should be described as empirical experiments are, by
stating their purpose and providing all details required to replicate
them. Together with the description of technical details listed in Table 3,
it is critical to enter in the notebook a summary of each experiment’s
results and the conclusions drawn from them.

4.2.8. Model output corroboration
This element documents any comparisons of model predictions to

independent data and patterns that were not used during model devel-
opment, parameterization, or verification. These independent data and
patterns can be considered as secondary predictions, because the model
was not designed to reproduce them. Thus, output corroboration pro-
vides model users evidence that the model is structurally realistic and
that its predictions can be trusted. The information to be provided in the
notebook or linked documents and files is similar to that for model
output verification (Table 3).

4.2.9. Software development
As discussed above, one of a modelling notebook’s primary purposes

is recording information that will not be in a final product but is still
important for project efficiency and success. Software development
produces many kinds of such information. Consequently, notes on the
entire process of code design, implementation, and, perhaps, runtime
optimization should be logged in the notebook, describing:

Code design decisions. (1) The implementation approaches chosen
(e.g., platforms or languages, numerical methods), briefly explaining the
reason why they were preferred over alternative ones. It is especially
useful to document any code designs that were tried and abandoned, to
remind the coder why the design did not work. (2) Any strategies for
avoiding code dependency problems. (3) Strategies for future code
maintenance.

Code implementation. (1) Information about how routines are
programmed (e.g., the source code itself, or a link to a file and procedure
names), and notes on specific implementations of functions or model
controls. Citations for code imported or adapted from elsewhere should
also be included here. (2) Notes about any (potential) problems with the
model, specific submodel(s), input data, etc, or ideas about possible
further extensions or directions of the model. Code implementation
entries would often be accompanied by “model description” entries,
describing the purpose and rationale of implemented elements.

Optimization and profiling. Code profiling and optimization
methods and results, including what parts of the code were tested and
changed and how each change affected execution speed. Once again, it is

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

9

also important to document what potential code improvements were
proven unhelpful.

5. Schedules, tools, and recommendations for keeping
modelling notebooks

5.1. Schedules

We recommend making one or more entries to the modelling note-
book daily; otherwise, important details can be forgotten or remem-
bered in a distorted way. In addition, daily entries have an emotional
benefit, as a daily log provides a written record of all the small, slow
advances, which helps put seemingly minor accomplishments into
perspective and increase the modeller’s confidence on the modelling
project. Within a day, entries can be made each time a task (e.g., running
an experiment) is completed or an important outcome has been pro-
duced. A good strategy is to create an explicit list of “triggers”: well-
defined events at which progress is recorded. Example triggers for
new notebook entries are (1) a non-trivial information search is made
and relevant results found; (2) an explicit design decision is made; (3) a
measurement is taken (e.g. when profiling or testing the effect of a
parameter value); (4) debugging tests for subtle problems are per-
formed; (5) a piece of code or an entire submodel is added, changed or
optimized; or (6) an atypical model behaviour or a problem that needs
investigation is noticed. The list of triggers should grow with experience:
a new trigger should be generated any time you wish you had recorded
something that you did not.

5.2. Tools

There is a wide range of complementary tools for keeping a model-
ling notebook. Which ones are best for you will depend on standards
used in your team and your own expertise and skills. We list some tools
that are currently common, knowing that some will become outdated
and new ones will appear.

5.2.1. Word processors
Word processing software is the simplest tool for keeping a modelling

notebook. Word processor features that could be useful for keeping a
notebook include text formatting and editing, autosaving, opening files
from other software, the ability to create and use templates; the ability to
insert hyperlinks, equations, other documents, images, videos and other
visual content; and collaboration options (see basic characteristics of
common word processors in Wikipedia contributors, 2019).

5.2.2. Spreadsheets
Like word processors, spreadsheet programs are ubiquitous, simple,

and relatively suitable for keeping a notebook. The tabular format fa-
cilitates organization, e.g., with one log entry per line and separate
columns for date, TRACE task, model version, notes, to-do items, and
links to other documents that were modified (see basic characteristics of
common spreadsheet software in Wikipedia contributors, 2020a).
Spreadsheet notebooks can be sorted to, e.g., assemble all the work on
one task or all the unfinished to-do items.

5.2.3. Note-taking software
There is a growing number of note-taking packages and apps that are

easy to set up and use. Most of them can store notes in the cloud and
synchronize them across multiple devices, and some let users upload
files, embed and edit external files or programming code, record audio,
snap pictures, and clip pages from the Internet (see the basic and
advanced features of the many available options in Wikipedia contrib-
utors, 2020b).

Microsoft OneNote and Evernote are probably the most popular
digital note-taking packages and, because of their wide variety of fea-
tures, they are useful for modelling notebooks. Microsoft OneNote and

Evernote are programs for free-form information gathering, organizing,
and archiving, and they enable multi-user collaboration. Information is
saved in pages organized into sections within notebooks, and the notes
can be tagged, annotated, edited, searched, given attachments, and
exported. Notes include not only text, tables, pictures, and drawings, but
also hyperlinks, multimedia recordings, and images captured from
cameras or websites. They allow offline data editing with later syn-
chronization and merging, which allows working on multiple machines
and operating systems, and enables collaboration among multiple users
in a shared notebook even when they are offline.

Another interesting note-taking tool for keeping modelling note-
books is Org-mode. It is an outline processor within the Emacs editor,
designed for keeping notes, maintaining to-do lists, and project planning
with a plain-text markup language (see https://orgmode.org/). It has
tools that also facilitate reproducible research as Org files can include
fully functional source code blocks, which can be evaluated in place and
their results can be captured in the file. Therefore, a self-contained
document combining problem formulation, original data, analyses,
and conclusions can be created in a way that can be reproduced by any
reader using the same software tools.

5.2.4. Cloud-based collaborative document-editing tools
Online real-time document-editing collaboration tools are useful

when several modellers are working on the same project and share a
notebook. In this context, these tools are critical for cooperative work,
streamlining workflows, and eliminating inefficiencies. They allow
collaborators of the modelling project to view, edit, and work simulta-
neously on their modelling notebook as they work on separate modelling
tasks. Google Docs is currently probably the most widely used collabo-
rative document tool; however, the increase in telecommuting has led to
the development of numerous others, such as Microsoft Office Online,
Dropbox Paper, Bit.ai, Zoho Docs, and Framasoft.

5.2.5. Documentation generators
These are programming tools that assemble comments written in the

code files into a documentation file. They allow cross referencing of
documentation and code, so the document makes it easier to access and
understand the code. If the programmer is good at documenting code
design and optimization, debugging, etc., in code comments, these tools
can be useful for assembling that documentation in the modelling
notebook or a separate document. Examples include Doxygen and Jav-
adoc, and the basic features of available software are described in
Wikipedia contributors (2020c).

5.2.6. Computational notebooks
These are interactive computing environments that enable users to

produce notebook documents containing a complete record of a
computation, including the computer code, interactive widgets, plots,
descriptive texts, equations, and multimedia resources. The idea for the
computational notebook can be traced back to the literate programming
concept (Knuth, 1984) but has only become popular with the rise of data
science. Currently the most widely adopted systems are Mathematica, R
Markdown, and, especially, Jupyter Notebooks. Each of these
computing environments allows for both performing analyses and
combining code, results in multiple formats, and explanatory text into a
self-contained computational narrative, which can be shared with and
explored and rerun by other scientists, facilitating reproducible
computational research (Perkel, 2018; Rule et al., 2019). Each notebook
document keeps a historical (and dated) record of the analysis being
performed and, in some cases, it can be version controlled. Computa-
tional notebooks are powerful for performing and documenting model
analyses and simulation experiments, but as we have discussed
throughout this paper, those are only a part of the modelling cycle and
the model evaludation framework. Remember that critical details of all
elements of model development (from problem formulation to concep-
tual model evaluation) must also be documented, either in the

D. Ayllón et al.

https://orgmode.org/

Environmental Modelling and Software 136 (2021) 104932

10

computational notebook or in a linked document.

5.2.7. Version control systems
Version control systems (VCSs) help software developers manage

changes to source code and its documentation over time. Version control
systems keep track of and uniquely identify modifications to the code, as
requested by a user, from correction of a small typo to a complete
redesign. VCSs generally work by maintaining a “repository” to which
code updates are “committed.” When a change is committed, the user
includes text describing the code modifications. Committing small in-
cremental changes allows the software developers to go back to any
previous version at any time. Hence, if a mistake is made by a contrib-
utor, earlier versions of the code can be compared to help fix the bug
while minimizing disruption to other collaborators. In addition, since
VCSs track every change made by each contributor, they prevent
simultaneous work from conflicting. Thus, a good VCS provides file
backups, synchronization, both short- and long-term undo, change
tracking, and ownership, sandboxing (testing environments isolated
from the repository), branching (creating a copy of the repository that
can be modified without altering the main branch) and merging (inte-
grating two branches into one), bug tracking, and reporting. Currently,
SVN, Mercurial, and, especially, Git are widely adopted VCSs.

Perez-Riverol et al. (2016) provide useful guidelines for using
version control in scientific research. As pointed out by Rule et al.
(2019), version control can complement notebook keeping because it
provides the capability, when the inevitable bugs are found, to deter-
mine which model analyses or simulation experiments it affected. On-
line platforms such as Github, Bitbucket, and Gitlab and user interface
software for these platforms (e.g., Github desktop and Gitkraken) make
VCSs much easier to use. Simple structured texts (e.g., using Markdown
syntax) stored in the same repository as the model code and scripts for
analyses can keep track of the whole history of the modelling process
and hence serve as a modelling notebook.

5.3. Recommendations

We provide the following recommendations for keeping modelling
notebooks. The recommendations are primarily for inexperienced
modellers and students and their instructors, but potentially valuable to
any modeller not yet in the habit of keeping a notebook.

Choose the right tools. Use tools (see previous section) that suit your
skills and experience as well as those of your collaborators.

Use the TRACE terminology. Using the terminology (tags and key-
words) provided in Table 1 will help you organize the notebook,
remember what tasks remain in the modelling cycle, and facilitate
production of TRACE documents to support your work and publications.
This terminology should be also used to name and organize project files.

Keep it readable. Remember that the modelling notebook must be
understood not only by you but by any collaborator in the modelling
project. It must be readable by people, not by machines. In particular,
TRACE documents need to be useful to clients without profound
modelling knowledge.

Document as you proceed, not afterwards. Otherwise, relevant infor-
mation and details can be forgotten and thus never documented (see
Section Schedules).

Treat your notebook as append-only. Add each new entry at the end of
the log to keep them in chronological order, and do not edit previous
entries as the modelling project evolves. The notebook’s purpose is to
document the modelling experience, not to have a perfect finished piece
of documentation. Documentation is cleaned up during production of a
TRACE document or other formal products.

Never modify or remove anything. You never know what information
can be useful in the future, or if seemingly incorrect information could
be actually correct. Instead, when you modify or replace part of the
model or analysis, note in the new notebook entry which old entry it
updates. You can add also a note in the old entry indicating that it has

been updated and when.
Create templates for each TRACE element/specific modelling task. Create

templates that can be easily accessed and loaded to speed up the
documentation process.

Insert graphs, equations, videos, images, and other visual content. Visual
information is often easier to follow and understand than written
descriptions.

Embed external documents. Sometimes it can be useful to embed
external documents (e.g., a spreadsheet with parameter values, an R
script, a code snippet, etc.) instead of hyperlinking them (e.g., if the
notebook is meant to be shared). In this case, make sure that linked
documents cannot alter the notebook.

Take advantage of OCR search. Optical Character Recognition can be
used to search and retrieve information from hand-written images (scans
or pictures from old paper notebooks, notes from meetings, etc.), figures,
or graphs.

Keep automatic backups, and use the notebook to remind you to archive
other files. Back up the notebook to avoid losing its information. Use
backup technology you are comfortable with, but make sure you can
always access the current version if you use multiple devices. This access
is critical for collaborative teams (see collaborative tools in the previous
section). The notebook should remind you to record which code and
document versions you worked on, which can remind you to archive
those files regularly.

Use VCS on your modelling notebook document. If you are comfortable
with VCS, use it to back up and track modifications to your notebook.

Keep an efficient folder structure. Design a smart archiving system at
the first stages of work. Keep files that are linked to the notebook
organized, which will make it easier to reference, hyperlink, back up,
and version control them. Use the terminology provided in Table 1 (tags
and keywords) to organize and name folders.

Design a reproducible research workflow. When performing large or
repeated simulation experiments, develop, document, and automate
end-to-end workflows from raw inputs to publication-ready outputs
(Kitzes et al., 2018; Essawy et al., 2020).

5.4. How to produce a TRACE document from a modelling notebook

Compiling a TRACE document of any modelling project can increase
the chances that the work will be accepted (for publication, decision
making, or other purposes), used as intended, and reused for future
projects. This is the step that distils information useful to others from the
notebook. Grimm et al. (2014) provided a template and a short user
guide on the TRACE framework. Each element in the TRACE document
starts with an executive summary and then, if needed, a table of con-
tents. TRACE documents are not meant to be read from cover to cover
but selectively, so it is critical that the table of contents facilitates nav-
igation. Similarly, a hyperlinked subject index is also worth producing.
When compiling a TRACE document from the modelling notebook,
emphasis is of course on the final model version used to obtain the re-
sults reported in a publication or report. In some cases, it may also be
important to describe the evolution of key submodels and design de-
cisions. Two example TRACE documents are provided in Supplement S1.

The key steps in compiling a TRACE document from a modelling
notebook are: (1) Extract notebook entries by their TRACE tags, focusing
on the model version used for the final results. The notebook software
should make this easy. (2) Retrieve corresponding information from
linked files. (3) Organize the documentation for each TRACE tag into a
coherent section on its modelling tasks (using the keywords in Table 1).
(4) Edit the text, figures, and tables into a coherent format. (5) Check the
TRACE document for completeness. Steps 1 and 2 (and even 3) are
greatly simplified by using TRACE to organize the modelling notebook
(see section 4.1).

TRACE, like any standard, serves as a checklist of tasks for model
development, testing, analysis, and application, and thereby provides
quality assurance. Often the process of compiling a TRACE document

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

11

reveals that important tests or analyses are missing; they can then be
completed and recorded in the notebook. However, another important
benefit of using TRACE terminology in modelling notebooks is being
exposed to this checklist sooner instead of later.

While keeping a notebook facilitates the compilation of a TRACE
document, this is just one of its many benefits—keeping a notebook is
beneficial whether or not a TRACE document is produced. However,
some kind of distillation process is necessary to compile a useful snap-
shot of a project’s status at, e.g., the time when major deliverables are
produced. Using TRACE organization, instead of a fully chronological
format, can facilitate such a process. Some modellers might therefore
choose, as pointed out in Section 4.1., to keep a modelling notebook that
has the structure of a TRACE document. Entries are thus chronological
only within each of the TRACE elements. This approach has the benefit
of having notebook entries grouped by the elements of the modelling
cycle, but makes it harder to follow the incremental development of a
model and its rationale. There are certainly multiple strategies for
organizing information over the course of a project, all likely to be more
efficient than the lack of such a strategy.

6. Discussion

We propose a standard terminology and document structure, based
on the TRACE framework, to keep notebooks that document the devel-
opment process of a modelling project, and describe tools and routines
that can make project documentation easier. Keeping a notebook has
direct and indirect benefits that exceed its costs in time and effort. We
have emphasized why modellers should make the effort of keeping an
organized notebook:

(1) The main benefit is increased efficiency of the workflow by
facilitating iterative work; task management (e.g., knowing what
has and has not been done); rapid access to the information,
outcomes, files, and documentation generated along the project;
and reuse of successful methods while avoiding time lost by
repeating unsuccessful approaches.

(2) It increases long-term productivity by helping modellers apply
successful methods to new data and contexts and even to reuse
processes or code for new projects.

(3) It facilitates collaborative work in projects involving multiple
modellers and software developers, for example by tracking the
work done by each team member and giving members access to
each others’ work; however, collaborative documentation can
require more sophisticated procedures and tools, such as docu-
mentation standards and tools to deal with parallel editions.

(4) It enables reproducible—and therefore more credi-
ble—computational research by fully documenting simulation
experiments, including the exact input, code, and quantitative
analyses, and all technical details of the experiments, which are
likely to be lost if not recorded promptly. While reproducibility in
complex simulation studies can be achieved by tools that
encapsulate the end-to-end workflow, from raw data to final
publication-ready outputs (e.g., containerized virtual environ-
ments), documentation that fully describes the analysis is
fundamental (Essawy et al., 2020).

(5) Importantly, it allows modellers to easily assemble and produce
TRACE documentation of their model (i.e., “writing your TRACE
document in 15 min per day”). A TRACE document extracted and
distilled from the notebook supports a model, and publications
and decisions based on the model, by documenting the entire
modelling cycle in a standard format intended for public use.

(6) Last and perhaps most importantly, as indicated in the motto of
this article, keeping a notebook forces modellers to continuously
reflect upon lessons learned, sharpen their questions, question
assumptions, develop their stories, and make scientific writing an
integral part of the daily work.

As environmental science becomes more computational, modellers
need to merge the management practices of traditional science with
those of data and computer science and software development. Envi-
ronmental computational research must not only be reproducible but
also adhere to high standards of modelling practice (e.g., EFSA, 2014).
Environmental modellers must provide convincing evidence that their
simulation models are thoughtfully designed, correctly implemented,
thoroughly tested and validated, and that model limitations are well
understood. Providing such evidence is the purpose of the TRACE
documentation framework and TRACE modelling notebooks. To meet
these high-level standards, modellers can borrow methods, techniques
and tools for software development and software quality control from
software engineers, and adopt data science principles to streamline the
analytic workflow (see Lowndes et al., 2017). But the real challenge goes
even further and lies in the thorough documentation of the entire
modelling cycle.

Science based on modelling would be markedly improved by an
established culture of keeping modelling notebooks that are routinely
turned into TRACE documents in publications and reports. Trans-
parency, reproducibility, and reliability would reach a new level,
coherence within and across disciplines (Ayllón et al., 2018) would be
increased, and theory development (Lorscheid et al., 2019) would be
facilitated. Instead of developing models from scratch, based on ad hoc
design decisions, modellers would learn from each other by speaking the
same language (Vincenot, 2018) and using the same checklists. The most
efficient way to establish such a new culture in environmental modelling
is to introduce the basic principles and best practices of keeping
modelling notebooks in modelling curricula. We consider early adoption
of this new culture an important (but not the only) step to ensure good
modelling practice in future environmental modelling. To this end,
beginning modellers must be trained to keep notebooks just as students
are in the field and wet laboratory.

We suggested here a particular structure and practice for keeping
modelling notebooks. How well these suggestions work, for self-taught
beginners, modelling students and instructors, and also for more expe-
rienced modellers, remains to be tested. As with the ODD protocol
(Grimm et al., 2006, 2010, 2002a), we hope to learn from the experience
of notebook and TRACE users and welcome users to provide feedback by
contacting the lead author. To allow us to track, improve, and update
our guidance and recommendations, we ask users to add this text to the
Methods section of relevant publications: “Model development, imple-
mentation, testing, analysis, and application was documented in a modelling
notebook according to Ayllón et al. (2020), and a corresponding TRACE
document (Schmolke et al., 2010: Grimm et al., 2014). The TRACE
document is available in the Supplementary Material and provides evidence
that the model was thoughtfully designed, correctly implemented, thoroughly
tested, well understood, and appropriately used for its intended purpose.”

To conclude, as a relatively new scientific approach, simulation
modelling has continuously evolving techniques; however, common
documentation standards are independent of techniques and in fact are
made more important by the rapid pace of technological change. The
modelling cycle (Grimm and Railsback, 2005) summarises the key steps
of model development, ODD (Grimm et al., 2006, 2010, 2020a) provides
a protocol for describing a model, TRACE (Grimm et al., 2014) sets
guidance for documenting model development, testing, analysis, and
application, and finally the modelling notebook format we propose here
is based on and designed to support all these standards. These four
components provide a complete framework for organizing and doc-
umenting modelling projects, and facilitate good modelling practice
throughout.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

D. Ayllón et al.

Environmental Modelling and Software 136 (2021) 104932

12

Acknowledgements

D. Ayllón was financially supported by the Spanish Ministry of
Economy, Industry and Competitiveness through the research project
CGL 2017-84269-P. S. Charles is participating under the umbrella of the
Graduate School H2O’Lyon (ANR-17-EURE-0018) and “Université de
Lyon” (UdL), as part of the program “Investissements d’Avenir” run by
“Agence Nationale de la Recherche” (ANR). C. Piou participated under
the funding from ANR-JCJC PEPPER (ANR-18-CE32-0010-01). J. G.
Polhill receives funding from the Scottish Government Rural Affairs
Food and Environment Strategic Research Programme. We thank four
anonymous reviewers for helpful comments that improved the quality of
the manuscript.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.envsoft.2020.104932.

References

Ayllón, D., Grimm, V., Attinger, S., Hauhs, M., Simmer, C., Vereecken, H., Lischeid, G.,
2018. Cross-disciplinary links in environmental systems science: current state and
claimed needs identified in a meta-review of process models. Sci. Total Environ.
622–623, 954–973.

Augusiak, J., Van Den Brink, P.J., Grimm, V., 2014. Merging validation and evaluation of
ecological models to ‘evaludation’: a review of terminology and a practical
approach. Ecol. Model. 280, 117–128.

Badham, J., Elsawah, S., Guillaume, J.H., Hamilton, S.H., Hunt, R.J., Jakeman, A.J.,
et al., 2019. Effective modeling for Integrated Water Resource Management: a guide
to contextual practices by phases and steps and future opportunities. Environ. Model.
Software 116, 40–56.

Becher, M.A., Grimm, V., Thorbek, P., Horn, J., Kennedy, P.J., Osborne, J.L., 2014.
BEEHAVE: a systems model of honeybee colony dynamics and foraging to explore
multifactorial causes of colony failure. J. Appl. Ecol. 51, 470–482.

Crook, S.M., Davison, A.P., Plesser, H.E., 2013. Learning from the past: approaches for
reproducibility in computational neuroscience. In: Bower, J. (Ed.), 20 Years of
Computational Neuroscience. Springer Series in Computational Neuroscience, 9.
Springer, New York.

Dirnagl, U., Przesdzing, I., 2016. A pocket guide to electronic laboratory notebooks in the
academic life sciences. F1000Research 5, 2.

Donkin, E., Dennis, P., Ustalakov, A., Warren, J., Clare, A., 2017. Replicating complex
agent based models, a formidable task. Environ. Model. Software 92, 142–151.

EFSA, 2014. Scientific Opinion on good modelling practice in the context of mechanistic
effect models for risk assessment of plant protection products. EFSA Journal 12 (3),
3589, 92 pp.

EFSA, 2018. Scientific Opinion on the state of the art of Toxicokinetic/Toxicodynamic
(TKTD) effect models for regulatory risk assessment of pesticides for aquatic
organisms. EFSA Journal 16 (8), 5377, 188 pp.

Elsawah, S., Pierce, S.A., Hamilton, S.H., Van Delden, H., Haase, D., Elmahdi, A.,
Jakeman, A.J., 2017. An overview of the system dynamics process for integrated
modelling of socio-ecological systems: lessons on good modelling practice from five
case studies. Environ. Model. Software 93, 127–145.

Essawy, B.T., Goodall, J.L., Voce, D., Morsy, M.M., Sadler, J.M., Choi, Y.D., et al., 2020.
A Taxonomy for Reproducible and Replicable Research in Environmental Modelling.
Environmental Modelling & Software, p. 104753.

Grimm, V., Railsback, S.F., 2005. Individual-based Modeling and Ecology. Princeton
University Press, Princeton, NJ.

Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V., Giske, J., et al., 2006.
A standard protocol for describing individual-based and agent-based models. Ecol.
Model. 198, 115–126.

Grimm, V., Berger, U., Deangelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F., 2010. The
ODD protocol: a review and first update. Ecol. Model. 221, 2760–2768.

Grimm, V., Augusiak, J., Focks, A., Frank, B.M., Gabsi, F., Johnston, A.S.A., et al., 2014.
Towards better modelling and decision support: documenting model development,
testing, and analysis using TRACE. Ecol. Model. 280, 129–139.

Grimm, V., Berger, U., 2016. Robustness analysis: deconstructing computational models
for ecological theory and applications. Ecol. Model. 326, 162–167.

Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L.,
et al., 2020a. The ODD protocol for describing agent-based and other simulation
models: a second update to improve clarity, replication, and structural realism.
J. Artif. Soc. Soc. Simulat. 23 (2), 7.

Grimm, V., Johnston, A.S.A., Thulke, H.H., Forbes, V.E., Thorbek, P., 2020b. Three
questions to ask before using model output for decision support. Nat. Commun. 11
(1), 1–3.

Kanare, H.M., 1985. Writing the Laboratory Notebook. American Chemical Society,
Washington D.C.

Kanza, S., Willoughby, C., Gibbins, N., Whitby, R., Frey, J.G., Erjavec, J., et al., 2017.
Electronic lab notebooks: can they replace paper? J. Cheminf. 9, 31.

Kitzes, J., Turek, D., Deniz, F. (Eds.), 2018. The Practice of Reproducible Research: Case
Studies and Lessons from the Data-Intensive Sciences. University of California Press,
Oakland, CA.

Kleijnen, J.P.C., 2015. Design and analysis of simulation experiments. In: International
Series in Operations Research & Management Science, second ed., 230. Springer
International Publishing, Cham.

Knuth, D.E., 1984. Literate programming. Comput. J. 27, 97–111.
Lorscheid, I., Heine, B.-O., Meyer, M., 2012. Opening the ‘black box’ of simulations:

increased transparency and effective communication through the systematic design
of experiments. Comput. Math. Organ. Theor. 18, 22–62.

Lorscheid, I., Berger, U., Grimm, V., Meyer, M., 2019. From cases to general principles –
a call for theory development through agent-based modeling. Ecol. Model. 393,
153–156.

Lee, K.S., 2003. Good laboratory notebook practices. Drug Inf. J. 37, 215–219.
Ligmann-Zielinska, A., Siebers, P.-O., Magliocca, N., Parker, D.C., Grimm, V., Du, J.,

et al., 2020. One size does not fit all": a roadmap of purpose-driven mixed-method
pathways for sensitivity analysis of agent-based models. J. Artif. Soc. Soc. Simulat.
23, 6.

Lowndes, J.S.S., Best, B.D., Scarborough, C., Afflerbach, J.C., Frazier, M.R., O’Hara, C.C.,
et al., 2017. Our path to better science in less time using open data science tools.
Nature Ecology & Evolution 1, 0160.

Miłkowski, M., Hensel, W.M., Hohol, M., 2018. Replicability or reproducibility? On the
replication crisis in computational neuroscience and sharing only relevant detail.
J. Comput. Neurosci. 45, 163–172.

Monks, T., Currie, C.S., Onggo, B.S., Robinson, S., Kunc, M., Taylor, S.J., 2018.
Strengthening the reporting of empirical simulation studies: introducing the STRESS
guidelines. J. Simulat. 13, 55–67.

Nickla, J.T., Boehm, M.B., 2011. Proper laboratory notebook practices: protecting your
intellectual property. J. Neuroimmune Pharmacol. 6, 4–9.

Peng, R.D., 2011. Reproducible research in computational science. Science 334,
1226–1227.

Perez-Riverol, Y., Gatto, L., Wang, R., Sachsenberg, T., Uszkoreit, J., Leprevost, F.d.V.,
et al., 2016. Ten simple rules for taking advantage of Git and GitHub. PLoS Comput.
Biol. 12, e1004947.

Perkel, J.M., 2018. Why Jupyter is data scientists’ computational notebook of choice.
Nature 563, 145–146.

Railsback, S.F., Grimm, V., 2019. Agent-based and Individual-Based Modeling: A
Practical Introduction, second ed. Princeton University Press, Princeton, N.J.

Rougier, N.P., Hinsen, K., Alexandre, F., Arildsen, T., Barba, L.A., Benureau, F.C., et al.,
2017. Sustainable computational science: the ReScience initiative. PeerJ Computer
Science 3, e142.

Rule, A., Birmingham, A., Zuniga, C., Altintas, I., Huang, S.-C., Knigh, R., et al., 2019.
Ten simple rules for writing and sharing computational analyses in Jupyter
Notebooks. PLoS Comput. Biol. 15, e1007007.

Sandve, G.K., Nekrutenko, A., Taylor, J., Hovig, E., 2013. Ten simple rules for
reproducible computational research. PLoS Comput. Biol. 9, e1003285.

Schmolke, A., Thorbek, P., DeAngelis, D.L., Grimm, V., 2010. Ecological models
supporting environmental decision making: a strategy for the future. Trends Ecol.
Evol. 25, 479–486.

Schuwirth, N., Borgwardt, F., Domisch, S., Friedrichs, M., Kattwinkel, M., Kneis, D.,
et al., 2019. How to make ecological models useful for environmental management.
Ecol. Model. 411, 108784.

Stillman, R.A., Railsback, S.F., Giske, J., Berger, U., Grimm, V., 2015. Making predictions
in a changing world: the benefits of individual-based ecology. Bioscience 65,
140–150.

Vincenot, C.E., 2018. How new concepts become universal scientific approaches: insights
from citation network analysis of agent-based complex systems science. Proc. Biol.
Sci. 285, 20172360.

Wikipedia contributors, 2019. September 25. Comparison of word processors. In:
Wikipedia, the Free Encyclopedia. Retrieved 05:56, May 22, 2020, from. https://en.
wikipedia.org/w/index.php?title=Comparison_of_word_processors&oldid
=917729583.

Wikipedia contributors, 2020. May 11. Comparison of spreadsheet software. In:
Wikipedia, the Free Encyclopedia. Retrieved 06:00, May 22, 2020, from. https://en.
wikipedia.org/w/index.php?title=Comparison_of_spreadsheet_software&oldid
=956099192.

Wikipedia contributors, 2020b. April 25. Comparison of note-taking software. In:
Wikipedia, the Free Encyclopedia. Retrieved 06:01, May 22, 2020, from. https://en.
wikipedia.org/w/index.php?title=Comparison_of_note-taking_software&oldid
=953002478.

Wikipedia contributors, 2020c. May 12. Comparison of documentation generators. In:
Wikipedia, the Free Encyclopedia. Retrieved 06:03, May 22, 2020, from. https://en.
wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid
=956291012.

Zurell, D., Franklin, J., König, C., Bouchet, P.J., Dormann, C.F., Elith, J., et al., 2020.
A standard protocol for reporting species distribution models. Ecography 43,
1261–1277.

D. Ayllón et al.

https://doi.org/10.1016/j.envsoft.2020.104932
https://doi.org/10.1016/j.envsoft.2020.104932
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref1
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref1
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref1
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref1
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref2
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref2
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref2
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref3
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref3
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref3
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref3
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref4
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref4
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref4
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref5
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref5
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref5
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref5
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref6
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref6
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref7
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref7
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref8
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref8
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref8
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref9
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref9
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref9
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref10
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref10
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref10
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref10
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref11
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref11
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref11
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref12
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref12
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref13
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref13
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref13
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref14
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref14
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref15
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref15
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref15
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref16
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref16
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref17
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref17
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref17
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref17
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref18
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref18
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref18
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref19
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref19
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref20
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref20
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref21
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref21
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref21
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref22
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref22
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref22
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref23
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref24
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref24
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref24
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref25
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref25
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref25
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref26
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref27
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref27
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref27
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref27
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref28
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref28
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref28
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref29
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref29
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref29
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref30
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref30
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref30
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref31
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref31
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref32
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref32
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref33
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref33
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref33
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref34
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref34
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref35
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref35
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref36
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref36
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref36
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref37
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref37
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref37
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref38
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref38
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref39
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref39
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref39
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref40
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref40
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref40
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref41
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref41
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref41
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref42
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref42
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref42
https://en.wikipedia.org/w/index.php?title=Comparison_of_word_processors&oldid=917729583
https://en.wikipedia.org/w/index.php?title=Comparison_of_word_processors&oldid=917729583
https://en.wikipedia.org/w/index.php?title=Comparison_of_word_processors&oldid=917729583
https://en.wikipedia.org/w/index.php?title=Comparison_of_spreadsheet_software&oldid=956099192
https://en.wikipedia.org/w/index.php?title=Comparison_of_spreadsheet_software&oldid=956099192
https://en.wikipedia.org/w/index.php?title=Comparison_of_spreadsheet_software&oldid=956099192
https://en.wikipedia.org/w/index.php?title=Comparison_of_note-taking_software&oldid=953002478
https://en.wikipedia.org/w/index.php?title=Comparison_of_note-taking_software&oldid=953002478
https://en.wikipedia.org/w/index.php?title=Comparison_of_note-taking_software&oldid=953002478
https://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid=956291012
https://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid=956291012
https://en.wikipedia.org/w/index.php?title=Comparison_of_documentation_generators&oldid=956291012
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref47
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref47
http://refhub.elsevier.com/S1364-8152(20)30989-0/sref47

	Keeping modelling notebooks with TRACE: Good for you and good for environmental research and management support
	1 Introduction
	2 Documenting experiments: laboratory and modelling notebooks
	3 Documenting the modelling cycle: model “evaludation” and the TRACE documentation framework
	4 Proposed structure of TRACE modelling notebooks
	4.1 What should be in a modelling notebook?
	4.2 Details for specific modelling tasks
	4.2.1 Problem formulation
	4.2.2 Model description
	4.2.3 Data evaluation
	4.2.4 Conceptual model evaluation
	4.2.5 Implementation verification
	4.2.6 Model output verification
	4.2.7 Model analysis and application
	4.2.8 Model output corroboration
	4.2.9 Software development

	5 Schedules, tools, and recommendations for keeping modelling notebooks
	5.1 Schedules
	5.2 Tools
	5.2.1 Word processors
	5.2.2 Spreadsheets
	5.2.3 Note-taking software
	5.2.4 Cloud-based collaborative document-editing tools
	5.2.5 Documentation generators
	5.2.6 Computational notebooks
	5.2.7 Version control systems

	5.3 Recommendations
	5.4 How to produce a TRACE document from a modelling notebook

	6 Discussion
	Declaration of competing interest
	Acknowledgements
	Appendix A Supplementary data
	References

