282 research outputs found

    ConservedPrimers 2.0: A high-throughput pipeline for comparative genome referenced intron-flanking PCR primer design and its application in wheat SNP discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In some genomic applications it is necessary to design large numbers of PCR primers in exons flanking one or several introns on the basis of orthologous gene sequences in related species. The primer pairs designed by this target gene approach are called "intron-flanking primers" or because they are located in exonic sequences which are usually conserved between related species, "conserved primers". They are useful for large-scale single nucleotide polymorphism (SNP) discovery and marker development, especially in species, such as wheat, for which a large number of ESTs are available but for which genome sequences and intron/exon boundaries are not available. To date, no suitable high-throughput tool is available for this purpose.</p> <p>Results</p> <p>We have developed, the ConservedPrimers 2.0 pipeline, for designing intron-flanking primers for large-scale SNP discovery and marker development, and demonstrated its utility in wheat. This tool uses non-redundant wheat EST sequences, such as wheat contigs and singleton ESTs, and related genomic sequences, such as those of rice, as inputs. It aligns the ESTs to the genomic sequences to identify unique colinear exon blocks and predicts intron lengths. Intron-flanking primers are then designed based on the intron/exon information using the Primer3 core program or BatchPrimer3. Finally, a tab-delimited file containing intron-flanking primer pair sequences and their primer properties is generated for primer ordering and their PCR applications. Using this tool, 1,922 bin-mapped wheat ESTs (31.8% of the 6,045 in total) were found to have unique colinear exon blocks suitable for primer design and 1,821 primer pairs were designed from these single- or low-copy genes for PCR amplification and SNP discovery. With these primers and subsequently designed genome-specific primers, a total of 1,527 loci were found to contain one or more genome-specific SNPs.</p> <p>Conclusion</p> <p>The ConservedPrimers 2.0 pipeline for designing intron-flanking primers was developed and its utility demonstrated. The tool can be used for SNP discovery, genetic variation assays and marker development for any target genome that has abundant ESTs and a related reference genome that has been fully sequenced. The ConservedPrimers 2.0 pipeline has been implemented as a command-line tool as well as a web application. Both versions are freely available at <url>http://wheat.pw.usda.gov/demos/ConservedPrimers/</url>.</p

    Social disparities in the use of colonoscopy by primary care physicians in Ontario

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is unclear if all persons in Ontario have equal access to colonoscopy. This research was designed to describe long-term trends in the use of colonoscopy by primary care physicians (PCPs) in Ontario, and to determine whether PCP characteristics influence the use of colonoscopy.</p> <p>Methods</p> <p>We conducted a population-based retrospective study of PCPs in Ontario between the years 1996-2005. Using administrative data we identified a screen-eligible group of patients aged 50-74 years in Ontario. These patients were linked to the PCP who provided the most continuous care to them during each year. We determined the use of any colonoscopy among these patients. We calculated the rate of colonoscopy for each PCP as the number of patients undergoing colonoscopies per 100 screen eligible patients. Negative binomial regression was used to identify factors associated with the rate of colonoscopy, using generalized estimating equations to account for clustering of patients within PCPs.</p> <p>Results</p> <p>Between 7,955 and 8,419 PCPs in Ontario per year (median age 43 years) had at least 10 eligible patients in their practices. The use of colonoscopy by PCPs increased sharply in Ontario during the study period, from a median rate of 1.51 [inter quartile range (IQR) 0.57-2.62] per 100 screen eligible patients in 1996 to 4.71 (IQR 2.70-7.53) in 2005. There was substantial variation between PCPs in their use of colonoscopy. PCPs who were Canadian medical graduates and with more years of experience were more likely to use colonoscopy after adjusting for their patient characteristics. PCPs were more likely to use colonoscopy if their patient populations were predominantly women, older, had more illnesses, and if their patients resided in less marginalized neighborhoods (lower unemployment, fewer immigrants, higher income, higher education, and higher English/French fluency).</p> <p>Conclusions</p> <p>There is substantial variation in the use of colonoscopy by PCPs, and this variation has increased as the overall use of colonoscopy increased over time. PCPs whose patients were more marginalized were less likely to use colonoscopy, suggesting that there are inequities in access.</p

    Cellular Radiosensitivity: How much better do we understand it?

    Get PDF
    Purpose: Ionizing radiation exposure gives rise to a variety of lesions in DNA that result in genetic instability and potentially tumorigenesis or cell death. Radiation extends its effects on DNA by direct interaction or by radiolysis of H2O that generates free radicals or aqueous electrons capable of interacting with and causing indirect damage to DNA. While the various lesions arising in DNA after radiation exposure can contribute to the mutagenising effects of this agent, the potentially most damaging lesion is the DNA double strand break (DSB) that contributes to genome instability and/or cell death. Thus in many cases failure to recognise and/or repair this lesion determines the radiosensitivity status of the cell. DNA repair mechanisms including homologous recombination (HR) and non-homologous end-joining (NHEJ) have evolved to protect cells against DNA DSB. Mutations in proteins that constitute these repair pathways are characterised by radiosensitivity and genome instability. Defects in a number of these proteins also give rise to genetic disorders that feature not only genetic instability but also immunodeficiency, cancer predisposition, neurodegeneration and other pathologies. Conclusions: In the past fifty years our understanding of the cellular response to radiation damage has advanced enormously with insight being gained from a wide range of approaches extending from more basic early studies to the sophisticated approaches used today. In this review we discuss our current understanding of the impact of radiation on the cell and the organism gained from the array of past and present studies and attempt to provide an explanation for what it is that determines the response to radiation

    Location-Specific Epigenetic Regulation of the Metallothionein 3 Gene in Esophageal Adenocarcinomas

    Get PDF
    Metallothionein 3 (MT3) maintains intracellular metal homeostasis and protects against reactive oxygen species (ROS)-induced DNA damage. In this study, we investigated the epigenetic alterations and gene expression of the MT3 gene in esophageal adenocarcinomas (EACs).Using quantitative bisulfite pyrosequencing, we detected unique DNA methylation profiles in the MT3 promoter region. The CpG nucleotides from -372 to -306 from the transcription start site (TSS) were highly methylated in tumor (n = 64) and normal samples (n = 51), whereas CpG nucleotides closest to the TSS (-4 and +3) remained unmethylated in all normal and most tumor samples. Conversely, CpG nucleotides in two regions (from -139 to -49 and +296 to +344) were significantly hypermethylated in EACs as compared to normal samples [FDR<0.001, -log10(FDR)>3.0]. The DNA methylation levels from -127 to -8 CpG sites showed the strongest correlation with MT3 gene expression (r = -0.4, P<0.0001). Moreover, the DNA hypermethylation from -127 to -8 CpG sites significantly correlated with advanced tumor stages and lymph node metastasis (P = 0.005 and P = 0.0313, respectively). The ChIP analysis demonstrated a more repressive histone modification (H3K9me2) and less active histone modifications (H3K4me2, H3K9ace) in OE33 cells than in FLO-1 cells; concordant with the presence of higher DNA methylation levels and silencing of MT3 expression in OE33 as compared to FLO-1 cells. Treatment of OE33 cells with 5-Aza-deoxycitidine restored MT3 expression with demethylation of its promoter region and reversal of the histone modifications towards active histone marks.In summary, EACs are characterized by frequent epigenetic silencing of MT3. The choice of specific regions in the CpG island is a critical step in determining the functional role and prognostic value of DNA methylation in cancer cells

    Modified FOLFOX-6 chemotherapy in advanced gastric cancer: Results of phase II study and comprehensive analysis of polymorphisms as a predictive and prognostic marker

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to evaluate the efficacy and toxicity of infusional 5-fluorouracil (5-FU), folinic acid and oxaliplatin (modified FOLFOX-6) in patients with advanced gastric cancer (AGC), as first-line palliative combination chemotherapy. We also analyzed the predictive or prognostic value of germline polymorphisms of candidate genes associated with 5-FU and oxaliplatin.</p> <p>Methods</p> <p>Seventy-three patients were administered a 2 hour infusion of oxaliplatin (100 mg/m<sup>2</sup>) and folinic acid (100 mg/m<sup>2</sup>) followed by a 46 hour continuous infusion of 5-FU (2,400 mg/m<sup>2</sup>). Genomic DNA from the patients' peripheral blood mononuclear cells was extracted. Ten polymorphisms within five genes were investigated including TS, GSTP, ERCC, XPD and XRCC.</p> <p>Results</p> <p>The overall response rate (RR) was 43.8%. Median time to progression (TTP) and overall survival (OS) were 6.0 months and 12.6 months, respectively. Toxicities were generally tolerable and manageable. The RR was significantly higher in patients with a 6-bp deletion homozygote (-6 bp/-6 bp) in TS-3'UTR (55.0% <it>vs</it>. 30.3% in +6 bp/+6 bp or +6 bp/-6 bp, <it>p </it>= 0.034), and C/A or A/A in XPD156 (52.0% <it>vs</it>. 26.1% in C/C, <it>p </it>= 0.038). The -6 bp/-6 bp in TS-3'UTR was significantly associated with a prolonged TTP and OS. In a multivariate analysis, the 6-bp deletion in TS-3'UTR was identified as an independent prognostic marker of TTP (hazard ratio = 0.561, <it>p </it>= 0.032).</p> <p>Conclusion</p> <p>Modified FOLFOX-6 chemotherapy appears to be active and well tolerated as first line chemotherapy in AGC patients. The 6-bp deletion in TS-3'UTR might be a candidate to select patients who are likely to benefit from 5-FU based modified FOLFOX-6 in future large scale trial.</p

    Increased expression of EphA7 correlates with adverse outcome in primary and recurrent glioblastoma multiforme patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malignant gliomas are lethal cancers, highly dependent on angiogenesis and treatment options and prognosis still remain poor for patients with recurrent glioblastoma multiforme (GBM). Ephs and ephrins have many well-defined functions during embryonic development of central nervous system such as axon mapping, neural crest cell migration, hindbrain segmentation and synapse formation as well as physiological and abnormal angiogenesis. Accumulating evidence indicates that Eph and ephrins are frequently overexpressed in different tumor types including GBM. However, their role in tumorigenesis remains controversial, as both tumor growth promoter and suppressor potential have been ascribed to Eph and ephrins while the function of EphA7 in GBM pathogenesis remains largely unknown.</p> <p>Methods</p> <p>In this study, we investigated the immunohistochemical expression of EphA7 in a series of 32 primary and recurrent GBM and correlated it with clinical pathological parameters and patient outcome. In addition, intratumor microvascular density (MVD) was quantified by immunostaining for endothelial cell marker von Willebrand factor (vWF).</p> <p>Results</p> <p>Overexpression of EphA7 protein was predictive of the adverse outcome in GBM patients, independent of MVD expression (p = 0.02). Moreover, high density of MVD as well as higher EphA7 expression predicted the disease outcome more accurately than EphA7 variable alone (p = 0.01). There was no correlation between MVD and overall survival or recurrence-free survival (p > 0.05). However, a statistically significant correlation between lower MVD and tumor recurrence was observed (p = 0.003).</p> <p>Conclusion</p> <p>The immunohistochemical assessment of tissue EphA7 provides important prognostic information in GBM and would justify its use as surrogate marker to screen patients for tyrosine kinase inhibitor therapy.</p

    A heterozygous moth genome provides insights into herbivory and detoxification

    Get PDF
    How an insect evolves to become a successful herbivore is of profound biological and practical importance. Herbivores are often adapted to feed on a specific group of evolutionarily and biochemically related host plants1, but the genetic and molecular bases for adaptation to plant defense compounds remain poorly understood2. We report the first whole-genome sequence of a basal lepidopteran species, Plutella xylostella, which contains 18,071 protein-coding and 1,412 unique genes with an expansion of gene families associated with perception and the detoxification of plant defense compounds. A recent expansion of retrotransposons near detoxification-related genes and a wider system used in the metabolism of plant defense compounds are shown to also be involved in the development of insecticide resistance. This work shows the genetic and molecular bases for the evolutionary success of this worldwide herbivore and offers wider insights into insect adaptation to plant feeding, as well as opening avenues for more sustainable pest management.Minsheng You … Simon W Baxter … et al

    The Intrinsic Antiviral Defense to Incoming HSV-1 Genomes Includes Specific DNA Repair Proteins and Is Counteracted by the Viral Protein ICP0

    Get PDF
    Cellular restriction factors responding to herpesvirus infection include the ND10 components PML, Sp100 and hDaxx. During the initial stages of HSV-1 infection, novel sub-nuclear structures containing these ND10 proteins form in association with incoming viral genomes. We report that several cellular DNA damage response proteins also relocate to sites associated with incoming viral genomes where they contribute to the cellular front line defense. We show that recruitment of DNA repair proteins to these sites is independent of ND10 components, and instead is coordinated by the cellular ubiquitin ligases RNF8 and RNF168. The viral protein ICP0 targets RNF8 and RNF168 for degradation, thereby preventing the deposition of repressive ubiquitin marks and counteracting this repair protein recruitment. This study highlights important parallels between recognition of cellular DNA damage and recognition of viral genomes, and adds RNF8 and RNF168 to the list of factors contributing to the intrinsic antiviral defense against herpesvirus infection

    Top-quark physics at the CLIC electron-positron linear collider

    Get PDF
    ABSTRACT: The Compact Linear Collider (CLIC) is a proposed future high-luminosity linear electron-positron collider operating at three energy stages, with nominal centre-of-mass energies √s = 380 GeV, 1.5 TeV, and 3 TeV. Its aim is to explore the energy frontier, providing sensitivity to physics beyond the Standard Model (BSM) and precision measurements of Standard Model processes with an emphasis on Higgs boson and top-quark physics. The opportunities for top-quark physics at CLIC are discussed in this paper. The initial stage of operation focuses on top-quark pair production measurements, as well as the search for rare flavour-changing neutral current (FCNC) top-quark decays. It also includes a top-quark pair production threshold scan around 350 GeV which provides a precise measurement of the top-quark mass in a well-defined theoretical framework. At the higher-energy stages, studies are made of top-quark pairs produced in association with other particles. A study of t̄tH production including the extraction of the top Yukawa coupling is presented as well as a study of vector boson fusion (VBF) production, which gives direct access to high-energy electroweak interactions. Operation above 1 TeV leads to more highly collimated jet environments where dedicated methods are used to analyse the jet constituents. These techniques enable studies of the top-quark pair production, and hence the sensitivity to BSM physics, to be extended to higher energies. This paper also includes phenomenological interpretations that may be performed using the results from the extensive top-quark physics programme at CLIC.the Spanish Ministry of Economy, Industry and Competitiveness under projects MINEICO/FEDER-UE, FPA2015-65652-C4-3-R, FPA2015-71292-C2-1-Pand FPA2015-71956-REDT; and the MECD grant FPA2016-78645-P, Spai
    corecore