138 research outputs found

    A stochastic model of Echinococcus multilocularis transmission in Hokkaido, Japan, focusing on the infection process

    Get PDF
    Echinococcus multilocularis causes human alveolar echinococcus. In Japan, high prevalence of E. multilocularis among the fox population has been reported throughout Hokkaido. Accordingly, control measures, such as fox hunting and the distribution of bait containing Praziquantel, have been conducted. This study developed a transmission model for individuals in the fox population and included a stochastic infection process to assess the prevalence of E. multilocularis. To make our model realistic, we used the worm burden for each individual in the fox population. We assumed that the worm burden depends on the number of protoscoleces in a predated vole and the number of infection experiences. We carried out stochastic simulations with 1,000 trials for the situations of Koshimizu and Sapporo, Hokkaido, Japan. The distribution of the worm burden among foxes obtained using the model agreed with dissection data. The simulation indicates that a careful choice of season is necessary for an effective distribution of Praziquantel-containing bait. A stochastic model for E. multilocularis, which can assess the range of the prevalence in the fox population, would be helpful in analyzing their complex life-cycle and also in designing control strategies.</p

    Which States Matter? An Application of an Intelligent Discretization Method to Solve a Continuous POMDP in Conservation Biology

    Get PDF
    When managing populations of threatened species, conservation managers seek to make the best conservation decisions to avoid extinction. Making the best decision is difficult because the true population size and the effects of management are uncertain. Managers must allocate limited resources between actively protecting the species and monitoring. Resources spent on monitoring reduce expenditure on management that could be used to directly improve species persistence. However monitoring may prevent sub-optimal management actions being taken as a result of observation error. Partially observable Markov decision processes (POMDPs) can optimize management for populations with partial detectability, but the solution methods can only be applied when there are few discrete states. We use the Continuous U-Tree (CU-Tree) algorithm to discretely represent a continuous state space by using only the states that are necessary to maintain an optimal management policy. We exploit the compact discretization created by CU-Tree to solve a POMDP on the original continuous state space. We apply our method to a population of sea otters and explore the trade-off between allocating resources to management and monitoring. We show that accurately discovering the population size is less important than management for the long term survival of our otter population

    Seabird species vary in behavioural response to drone census

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.Unmanned aerial vehicles (UAVs) provide an opportunity to rapidly census wildlife in remote areas while removing some of the hazards. However, wildlife may respond negatively to the UAVs, thereby skewing counts. We surveyed four species of Arctic cliff-nesting seabirds (glaucous gull Larus hyperboreus, Iceland gull Larus glaucoides, common murre Uria aalge and thick-billed murre Uria lomvia) using a UAV and compared censusing techniques to ground photography. An average of 8.5% of murres flew off in response to the UAV, but >99% of those birds were non-breeders. We were unable to detect any impact of the UAV on breeding success of murres, except at a site where aerial predators were abundant and several birds lost their eggs to predators following UAV flights. Furthermore, we found little evidence for habituation by murres to the UAV. Most gulls flew off in response to the UAV, but returned to the nest within five minutes. Counts of gull nests and adults were similar between UAV and ground photography, however the UAV detected up to 52.4% more chicks because chicks were camouflaged and invisible to ground observers. UAVs provide a less hazardous and potentially more accurate method for surveying wildlife. We provide some simple recommendations for their use.We thank T. Leonard and the Seabird Ecological Reserves Advisory Committee for permission to work at Witless Bay, the Canadian Wildlife Service for permits to work at Newfoundland and Nunavut and the Government of Nunavut for permits to work in Nunavut. Newfoundland and Labrador Murre Fund, Bird Studies Canada and the Molson Foundation directly funded the work. An NSERC Discovery Grant, the Canada Research Chair in Arctic Ecology and Polar Continental Shelf Project also helped fund the project. We thank T. Burke, G. Sorenson, T. Lazarus and M. Guigueno for their help and J. Nakoolak for keeping us safe from bear

    Intrapopulation Variability Shaping Isotope Discrimination and Turnover: Experimental Evidence in Arctic Foxes

    Get PDF
    Tissue-specific stable isotope signatures can provide insights into the trophic ecology of consumers and their roles in food webs. Two parameters are central for making valid inferences based on stable isotopes, isotopic discrimination (difference in isotopic ratio between consumer and its diet) and turnover time (renewal process of molecules in a given tissue usually measured when half of the tissue composition has changed). We investigated simultaneously the effects of age, sex, and diet types on the variation of discrimination and half-life in nitrogen and carbon stable isotopes (δ15N and δ13C, respectively) in five tissues (blood cells, plasma, muscle, liver, nail, and hair) of a top predator, the arctic fox Vulpes lagopus. We fed 40 farmed foxes (equal numbers of adults and yearlings of both sexes) with diet capturing the range of resources used by their wild counterparts. We found that, for a single species, six tissues, and three diet types, the range of discrimination values can be almost as large as what is known at the scale of the whole mammalian or avian class. Discrimination varied depending on sex, age, tissue, and diet types, ranging from 0.3‰ to 5.3‰ (mean = 2.6‰) for δ15N and from 0.2‰ to 2.9‰ (mean = 0.9‰) for δ13C. We also found an impact of population structure on δ15N half-life in blood cells. Varying across individuals, δ15N half-life in plasma (6 to 10 days) was also shorter than for δ13C (14 to 22 days), though δ15N and δ13C half-lives are usually considered as equal. Overall, our multi-factorial experiment revealed that at least six levels of isotopic variations could co-occur in the same population. Our experimental analysis provides a framework for quantifying multiple sources of variation in isotopic discrimination and half-life that needs to be taken into account when designing and analysing ecological field studies

    The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity

    Get PDF
    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide

    Lagged influence of North Atlantic Oscillation on population dynamics of a Mediterranean terrestrial salamander

    Get PDF
    he North Atlantic Oscillation (NAO) is a large-scale climatic pattern that strongly influences the atmospheric circulation in the northern Hemisphere and by consequence the long-term variability of marine and terrestrial ecosystem over great part of northern Europe and western Mediterranean. In the Mediterranean, the effects of the NAO on vertebrates has been studied mainly on bird populations but was rarely analysed in ectothermic animals, and in particular in amphibians. In this study, we investigated the relationships between winter, spring and summer NAO indexes and the long-term population dynamics of the plethodontid salamander Speleomantes strinatii. This terrestrial salamander was monitored inside an artificial cave in NW Italy for 24 consecutive years. The relationships between seasonal NAO indexes and the salamander dynamics were assessed by cross-correlation function (CCF) analysis, after prewhitening the time series by autoregressive moving average statistical modelling. Results of CCF analyses indicated that the salamander abundance varied in relation to the one-year ahead winter NAO (P = 0.018), while no relationships were found with spring and summer indexes. These results strengthen some previous findings that suggested a high sensitivity of temperate terrestrial amphibians to wintertime climatic conditions

    Revealing hidden species distribution with pheromones: the case of Synanthedon vespiformis (Lepidoptera: Sesiidae) in Sweden

    Get PDF
    Synanthedon vespiformis L. (Lepidoptera: Sesiidae) is considered a rare insect in Sweden, discovered in 1860, with only a few observations recorded until a sex pheromone attractant became available recently. This study details a national survey conducted using pheromones as a sampling method for this species. Through pheromone trapping we captured 439 specimens in Southern Sweden at 77 sites, almost tripling the number of previously reported records for this species. The results suggest that S. vespiformis is truly a rare species with a genuinely scattered distribution, but can be locally abundant. Habitat analyses were conducted in order to test the relationship between habitat quality and the number of individuals caught. In Sweden, S. vespiformis is thought to be associated with oak hosts, but our attempts to predict its occurrence by the abundance of oaks yielded no significant relationships. We therefore suggest that sampling bias and limited knowledge on distribution may have led to the assumption that this species is primarily reliant on oaks in the northern part of its range, whereas it may in fact be polyphagous, similar to S. vespiformis found as an agricultural pest in Central and Southern Europe. We conclude that pheromones can massively enhance sampling potential for this and other rare lepidopteran species. Large-scale pheromone-based surveys provide a snapshot of true presences and absences across a considerable part of a species national distribution range, and thus for the first time provide a viable means of systematically assessing changes in distribution over time with high spatiotemporal resolution

    Effects of Reproductive Status, Social Rank, Sex and Group Size on Vigilance Patterns in Przewalski's Gazelle

    Get PDF
    Quantifying vigilance and exploring the underlying mechanisms has been the subject of numerous studies. Less attention has focused on the complex interplay between contributing factors such as reproductive status, social rank, sex and group size. Reproductive status and social rank are of particular interest due to their association with mating behavior. Mating activities in rutting season may interfere with typical patterns of vigilance and possibly interact with social rank. In addition, balancing the tradeoff between vigilance and life maintenance may represent a challenge for gregarious ungulate species rutting under harsh winter conditions. We studied vigilance patterns in the endangered Przewalski's gazelle (Procapra przewalskii) during both the rutting and non-rutting seasons to examine these issues.Field observations were carried out with focal sampling during rutting and non-rutting season in 2008-2009. Results indicated a complex interplay between reproductive status, social rank, sex and group size in determining vigilance in this species. Vigilance decreased with group size in female but not in male gazelles. Males scanned more frequently and thus spent more time vigilant than females. Compared to non-rutting season, gazelles increased time spent scanning at the expense of bedding in rutting season. During the rutting season, territorial males spent a large proportion of time on rutting activities and were less vigilant than non-territorial males. Although territorial males may share collective risk detection with harem females, we suggest that they are probably more vulnerable to predation because they seemed reluctant to leave rut stands under threats.Vigilance behavior in Przewalski's gazelle was significantly affected by reproductive status, social rank, sex, group size and their complex interactions. These findings shed light on the mechanisms underlying vigilance patterns and the tradeoff between vigilance and other crucial activities

    To see or not to see: investigating detectability of Ganges River dolphins using a combined visual-acoustic survey

    Get PDF
    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring

    On the use of parataxonomy in biodiversity monitoring: a case study on wild flora

    Get PDF
    International audienceMonitoring programs that assess species-richness and turnover are now regarded as essential to document biodiversity loss worldwide. Implementation of such programs is impeded by a general decrease in the number of skilled naturalists. Here we studied how morphotypes, instead of species, might be used by unskilled participants (referred to as “volunteers”) to survey common plant communities. Our main questions were: (1) Can morphotypes be used as a robust estimator of species-richness (alpha-diversity) and assemblage turnover (Beta-diversity)? and (2) What is the robustness (reproducibility and repeatability) of such methods? Double inventories were performed on 150 plots in arable Weld margins, one by a non-expert using morphotypes, the other by a taxonomist using species. To test the robustness of morphotype identiWcation among participants, 20 additional plots were surveyed by eight volunteers using the same protocol. We showed that (1) the number of morphotypes identiWed by unskilled volunteers in a plot was always strongly correlated with species-richness. (2) Morphotypes were sensitive to diVerences among habitats but were less accurate than species to detect these diVerences. (3) Morphotype identiWcation varied signiWcantly within and between volunteers. Due to this lack of repeatability and reproducibility, parataxonomy cannot be considered a good surrogate for taxonomy. Nevertheless, assuming that morphotypes are identiWed with standardized methods, and that results are used only to evaluate gross species-richness but not species turnover, parataxonomy might be a valuable tool for rapid biodiversity assessment of common wild flora
    corecore