1,522 research outputs found
Recommended from our members
Characteristics of obstetric patients referred to intensive care in an Australian tertiary hospital
Background: The low mortality rate of 8.4 deaths per 100 000 women giving birth in Australia is well described; however, less is known about the spectrum of morbidity evident in pregnant and postpartum women admitted to an intensive care unit.
Aim: A detailed description of the demographics, comorbidities, diagnoses and interventions of pregnant and postpartum women admitted to an Australian intensive care unit (ICU).
Materials and Methods
A retrospective observational study was conducted in a large metropolitan hospital co-located with a quaternary-level maternity hospital. The participants were women admitted to intensive care between 1 January 2007 and 30 June 2009 who were pregnant at any gestational age, or within 6 weeks postpartum.
Results
Two hundred and forty-nine women were admitted to ICU within the study period constituting 19% of all ICU admissions. The main reasons for admission were hypertensive disease of pregnancy and obstetric haemorrhage. The median (range) age was 32 (17–51) years, and ICU duration was 32 (8–228) h. The median APACHE III-J severity of illness score was 32 (8–80). Almost one-quarter of admissions could be classified as primarily observational. The most common interventions in ICU were invasive arterial pressure monitoring, central venous access with pressure monitoring and magnesium infusions. One-fifth of admissions were invasively ventilated.
Conclusion
A substantial number of pregnant and postpartum women admitted to ICU did not receive interventions typical of other critical illness, such as mechanical ventilation, inotropes or renal replacement therapy. This confounds the use of an ICU admission as a measure of maternal morbidity
Knockout studies reveal an important role of <i>plasmodium</i> lipoic acid protein ligase a1 for asexual blood stage parasite survival
Lipoic acid (LA) is a dithiol-containing cofactor that is essential for the function of a-keto acid dehydrogenase complexes. LA acts as a reversible acyl group acceptor and 'swinging arm' during acyl-coenzyme A formation. The cofactor is post-translationally attached to the acyl-transferase subunits of the multienzyme complexes through the action of octanoyl (lipoyl): <i>N</i>-octanoyl (lipoyl) transferase (LipB) or lipoic acid protein ligases (LplA). Remarkably, apicomplexan parasites possess LA biosynthesis as well as scavenging pathways and the two pathways are distributed between mitochondrion and a vestigial organelle, the apicoplast. The apicoplast-specific LipB is dispensable for parasite growth due to functional redundancy of the parasite's lipoic acid/octanoic acid ligases/transferases. In this study, we show that <i>LplA1</i> plays a pivotal role during the development of the erythrocytic stages of the malaria parasite. Gene disruptions in the human malaria parasite <i>P.falciparum</i> consistently were unsuccessful while in the rodent malaria model parasite <i>P. berghei</i> the <i>LplA1</i> gene locus was targeted by knock-in and knockout constructs. However, the <i>LplA1</i> <sup>(-)</sup> mutant could not be cloned suggesting a critical role of LplA1 for asexual parasite growth <i>in vitro</i> and <i>in vivo</i>. These experimental genetics data suggest that lipoylation during expansion in red blood cells largely occurs through salvage from the host erythrocytes and subsequent ligation of LA to the target proteins of the malaria parasite
De-Trending Time Series for Astronomical Variability Surveys
We present a de-trending algorithm for the removal of trends in time series.
Trends in time series could be caused by various systematic and random noise
sources such as cloud passages, changes of airmass, telescope vibration or CCD
noise. Those trends undermine the intrinsic signals of stars and should be
removed. We determine the trends from subsets of stars that are highly
correlated among themselves. These subsets are selected based on a hierarchical
tree clustering algorithm. A bottom-up merging algorithm based on the departure
from normal distribution in the correlation is developed to identify subsets,
which we call clusters. After identification of clusters, we determine a trend
per cluster by weighted sum of normalized light-curves. We then use quadratic
programming to de-trend all individual light-curves based on these determined
trends. Experimental results with synthetic light-curves containing artificial
trends and events are presented. Results from other de-trending methods are
also compared. The developed algorithm can be applied to time series for trend
removal in both narrow and wide field astronomy.Comment: Revised version according to the referee's second revie
Structural plasticity of the living kinetochore
The kinetochore is a large, evolutionarily conserved protein structure that connects chromosomes with microtubules. During chromosome segregation, outer kinetochore components track depolymerizing ends of microtubules to facilitate the separation of chromosomes into two cells. In budding yeast, each chromosome has a point centromere upon which a single kinetochore is built, which attaches to a single microtubule. This defined architecture facilitates quantitative examination of kinetochores during the cell cycle. Using three independent measures-calibrated imaging, FRAP, and photoconversion-we find that the Dam1 submodule is unchanged during anaphase, whereas MIND and Ndc80 submodules add copies to form an "anaphase configuration" kinetochore. Microtubule depolymerization and kinesin-related motors contribute to copy addition. Mathematical simulations indicate that the addition of microtubule attachments could facilitate tracking during rapid microtubule depolymerization. We speculate that the minimal kinetochore configuration, which exists from G1 through metaphase, allows for correction of misattachments. Our study provides insight into dynamics and plasticity of the kinetochore structure during chromosome segregation in living cells
Dimensionality and dynamics in the behavior of C. elegans
A major challenge in analyzing animal behavior is to discover some underlying
simplicity in complex motor actions. Here we show that the space of shapes
adopted by the nematode C. elegans is surprisingly low dimensional, with just
four dimensions accounting for 95% of the shape variance, and we partially
reconstruct "equations of motion" for the dynamics in this space. These
dynamics have multiple attractors, and we find that the worm visits these in a
rapid and almost completely deterministic response to weak thermal stimuli.
Stimulus-dependent correlations among the different modes suggest that one can
generate more reliable behaviors by synchronizing stimuli to the state of the
worm in shape space. We confirm this prediction, effectively "steering" the
worm in real time.Comment: 9 pages, 6 figures, minor correction
Dual-gated bilayer graphene hot electron bolometer
Detection of infrared light is central to diverse applications in security,
medicine, astronomy, materials science, and biology. Often different materials
and detection mechanisms are employed to optimize performance in different
spectral ranges. Graphene is a unique material with strong, nearly
frequency-independent light-matter interaction from far infrared to
ultraviolet, with potential for broadband photonics applications. Moreover,
graphene's small electron-phonon coupling suggests that hot-electron effects
may be exploited at relatively high temperatures for fast and highly sensitive
detectors in which light energy heats only the small-specific-heat electronic
system. Here we demonstrate such a hot-electron bolometer using bilayer
graphene that is dual-gated to create a tunable bandgap and
electron-temperature-dependent conductivity. The measured large electron-phonon
heat resistance is in good agreement with theoretical estimates in magnitude
and temperature dependence, and enables our graphene bolometer operating at a
temperature of 5 K to have a low noise equivalent power (33 fW/Hz1/2). We
employ a pump-probe technique to directly measure the intrinsic speed of our
device, >1 GHz at 10 K.Comment: 5 figure
Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry
We present a new determination of the metallicity distribution, age, and
luminosity function of the Galactic bulge stellar population. By combining
near-IR data from the 2MASS survey, from the SOFI imager at ESO NTT and the
NICMOS camera on board HST we were able to construct color-magnitude diagrams
(CMD) and luminosity functions (LF) with large statistics and small photometric
errors from the Asymptotic Giant Branch (AGB) and Red Giant Branch (RGB) tip
down to . This is the most extended and complete LF so far
obtained for the galactic bulge. Similar near-IR data for a disk control field
were used to decontaminate the bulge CMDs from foreground disk stars, and hence
to set stronger constraint on the bulge age, which we found to be as large as
that of Galactic globular clusters, or \gsim 10 Gyr. No trace is found for
any younger stellar population. Synthetic CMDs have been constructed to
simulate the effect of photometric errors, blending, differential reddening,
metallicity dispersion and depth effect in the comparison with the
observational data. By combining the near-IR data with optical ones, from the
Wide Field Imager at the ESO/MPG 2.2m telescope, a disk-decontaminated
CMD has been constructed and used to derive the bulge metallicity
distribution, by comparison with empirical RGB templates. The bulge metallicity
is found to peak at near solar value, with a sharp cutoff just above solar, and
a tail towards lower metallicity that does not appreciably extend below
[M/H].Comment: 28 pages, 27 figures, A&A in press Full resolution version available
at http://www.eso.org/~mzoccali/bulgepap
Recommended from our members
Observational constraints on atmospheric and oceanic cross-equatorial heat transports: revisiting the precipitation asymmetry problem in climate models
Satellite based top-of-atmosphere (TOA) and surface radiation budget observations are combined with mass corrected vertically integrated atmospheric energy divergence and tendency from reanalysis to infer the regional distribution of the TOA, atmospheric and surface energy budget terms over the globe. Hemispheric contrasts in the energy budget terms are used to determine the radiative and combined sensible and latent heat contributions to the cross-equatorial heat transports in the atmosphere (AHT_EQ) and ocean (OHT_EQ). The contrast in net atmospheric radiation implies an AHT_EQ from the northern hemisphere (NH) to the southern hemisphere (SH) (0.75 PW), while the hemispheric difference in sensible and latent heat implies an AHT_EQ in the opposite direction (0.51 PW), resulting in a net NH to SH AHT_EQ (0.24 PW). At the surface, the hemispheric contrast in the radiative component (0.95 PW) dominates, implying a 0.44 PW SH to NH OHT_EQ. Coupled model intercomparison project phase 5 (CMIP5) models with excessive net downward surface radiation and surface-to-atmosphere sensible and latent heat transport in the SH relative to the NH exhibit anomalous northward AHT_EQ and overestimate SH tropical precipitation. The hemispheric bias in net surface radiative flux is due to too much longwave surface radiative cooling in the NH tropics in both clear and all-sky conditions and excessive shortwave surface radiation in the SH subtropics and extratropics due to an underestimation in reflection by clouds
Topological Color Codes and Two-Body Quantum Lattice Hamiltonians
Topological color codes are among the stabilizer codes with remarkable
properties from quantum information perspective. In this paper we construct a
four-valent lattice, the so called ruby lattice, governed by a 2-body
Hamiltonian. In a particular regime of coupling constants, degenerate
perturbation theory implies that the low energy spectrum of the model can be
described by a many-body effective Hamiltonian, which encodes the color code as
its ground state subspace. The gauge symmetry
of color code could already be realized by
identifying three distinct plaquette operators on the lattice. Plaquettes are
extended to closed strings or string-net structures. Non-contractible closed
strings winding the space commute with Hamiltonian but not always with each
other giving rise to exact topological degeneracy of the model. Connection to
2-colexes can be established at the non-perturbative level. The particular
structure of the 2-body Hamiltonian provides a fruitful interpretation in terms
of mapping to bosons coupled to effective spins. We show that high energy
excitations of the model have fermionic statistics. They form three families of
high energy excitations each of one color. Furthermore, we show that they
belong to a particular family of topological charges. Also, we use
Jordan-Wigner transformation in order to test the integrability of the model
via introducing of Majorana fermions. The four-valent structure of the lattice
prevents to reduce the fermionized Hamiltonian into a quadratic form due to
interacting gauge fields. We also propose another construction for 2-body
Hamiltonian based on the connection between color codes and cluster states. We
discuss this latter approach along the construction based on the ruby lattice.Comment: 56 pages, 16 figures, published version
Use of multicriteria decision analysis for assessing the benefit and risk of over-the-counter analgesics
Objectives
To test the ability of a multicriteria decision analysis (MCDA) model to incorporate disparate data sources of varying quality along with clinical judgement in a benefit–risk assessment of six well-known pain-relief drugs.
Methods
Six over-the-counter (OTC) analgesics were evaluated against three favourable effects and eight unfavourable effects by seven experts who specialise in the relief of pain, two in a 2-day facilitated workshop whose input data and judgements were later peer-reviewed by five additional experts.
Key findings
Ibuprofen salts and solubilised emerged with the best benefit–risk profile, followed by naproxen, ibuprofen acid, diclofenac, paracetamol and aspirin.
Conclusions
Multicriteria decision analysis enabled participants to evaluate the OTC analgesics against a range of favourable and unfavourable effects in a group setting that enabled all issues to be openly aired and debated. The model was easily communicated and understood by the peer reviewers, so the model should be comprehensible to physicians, pharmacists and other health professionals
- …
